skip to main content


Title: Attainability and Optimality: The Equalized Odds Fairness Revisited
Fairness of machine learning algorithms has been of increasing interest. In order to suppress or eliminate discrimination in prediction, various notions as well as approaches have been proposed to impose fairness. Given a notion of fairness, an essential problem is then whether or not it can always be attained, even if with an unlimited amount of data. This issue is, however, not well addressed yet. In this paper, focusing on the Equalized Odds notion of fairness, we consider the attainability of this criterion and, furthermore, if it is attainable, the optimality of the prediction performance under various settings. In particular, for prediction performed by a deterministic function of input features, we give conditions under which Equalized Odds can hold true; if the stochastic prediction is acceptable, we show that under mild assumptions, fair predictors can always be derived. For classification, we further prove that compared to enforcing fairness by post-processing, one can always benefit from exploiting all available features during training and get potentially better prediction performance while remaining fair. Moreover, while stochastic prediction can attain Equalized Odds with theoretical guarantees, we also discuss its limitation and potential negative social impacts.  more » « less
Award ID(s):
2134901
NSF-PAR ID:
10380978
Author(s) / Creator(s):
;
Editor(s):
Schölkopf, Bernhard; Uhler, Caroline; Zhang, Kun
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
177
ISSN:
2640-3498
Page Range / eLocation ID:
754 - 786
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine learning models are increasingly used in high-stakes decision-making systems. In such applications, a major concern is that these models sometimes discriminate against certain demographic groups such as individuals with certain race, gender, or age. Another major concern in these applications is the violation of the privacy of users. While fair learning algorithms have been developed to mitigate discrimination issues, these algorithms can still leak sensitive information, such as individuals’ health or financial records. Utilizing the notion of differential privacy (DP), prior works aimed at developing learning algorithms that are both private and fair. However, existing algorithms for DP fair learning are either not guaranteed to converge or require full batch of data in each iteration of the algorithm to converge. In this paper, we provide the first stochastic differentially private algorithm for fair learning that is guaranteed to converge. Here, the term “stochastic" refers to the fact that our proposed algorithm converges even when minibatches of data are used at each iteration (i.e. stochastic optimization). Our framework is flexible enough to permit different fairness notions, including demographic parity and equalized odds. In addition, our algorithm can be applied to non-binary classification tasks with multiple (non-binary) sensitive attributes. As a byproduct of our convergence analysis, we provide the first utility guarantee for a DP algorithm for solving nonconvex-strongly concave min-max problems. Our numerical experiments show that the proposed algorithm consistently offers significant performance gains over the state-of-the-art baselines, and can be applied to larger scale problems with non-binary target/sensitive attributes. 
    more » « less
  2. Despite the success of large-scale empirical risk minimization (ERM) at achieving high accuracy across a variety of machine learning tasks, fair ERM is hindered by the incompatibility of fairness constraints with stochastic optimization. We consider the problem of fair classification with discrete sensitive attributes and potentially large models and data sets, requiring stochastic solvers. Existing in-processing fairness algorithms are either impractical in the large-scale setting because they require large batches of data at each iteration or they are not guaranteed to converge. In this paper, we develop the first stochastic in-processing fairness algorithm with guaranteed convergence. For demographic parity, equalized odds, and equal opportunity notions of fairness, we provide slight variations of our algorithm–called FERMI–and prove that each of these variations converges in stochastic optimization with any batch size. Empirically, we show that FERMI is amenable to stochastic solvers with multiple (non-binary) sensitive attributes and non-binary targets, performing well even with minibatch size as small as one. Extensive experiments show that FERMI achieves the most favorable tradeoffs between fairness violation and test accuracy across all tested setups compared with state-of-the-art baselines for demographic parity, equalized odds, equal opportunity. These benefits are especially significant with small batch sizes and for non-binary classification with large number of sensitive attributes, making FERMI a practical, scalable fairness algorithm. The code for all of the experiments in this paper is available at: https://github.com/optimization-for-data-driven-science/FERMI. 
    more » « less
  3. Supervised learning models have been used in various domains such as lending, college admission, face recognition, natural language processing, etc. However, they may inherit pre-existing biases from training data and exhibit discrimination against protected social groups. Various fairness notions have been proposed to address unfairness issues. In this work, we focus on Equalized Loss (EL), a fairness notion that requires the expected loss to be (approximately) equalized across different groups. Imposing EL on the learning process leads to a non-convex optimization problem even if the loss function is convex, and the existing fair learning algorithms cannot properly be adopted to find the fair predictor under the EL constraint. This paper introduces an algorithm that can leverage off-the-shelf convex programming tools (e.g., CVXPY (Diamond and Boyd, 2016; Agrawal et al., 2018)) to efficiently find the global optimum of this non-convex optimization. In particular, we propose the ELminimizer algorithm, which finds the optimal fair predictor under EL by reducing the non-convex optimization to a sequence of convex optimization problems. We theoretically prove that our algorithm finds the global optimal solution under certain conditions. Then, we support our theoretical results through several empirical studies 
    more » « less
  4. Supervised learning models have been used in various domains such as lending, college admission, face recognition, natural language processing, etc. However, they may inherit pre-existing biases from training data and exhibit discrimination against protected social groups. Various fairness notions have been proposed to address unfairness issues. In this work, we focus on Equalized Loss (EL), a fairness notion that requires the expected loss to be (approximately) equalized across different groups. Imposing EL on the learning process leads to a non-convex optimization problem even if the loss function is convex, and the existing fair learning algorithms cannot properly be adopted to find the fair predictor under the EL constraint. This paper introduces an algorithm that can leverage off-the-shelf convex programming tools (e.g., CVXPY) to efficiently find the global optimum of this non-convex optimization. In particular, we propose the ELminimizer algorithm, which finds the optimal fair predictor under EL by reducing the non-convex optimization to a sequence of convex optimization problems. We theoretically prove that our algorithm finds the global optimal solution under certain conditions. Then, we support our theoretical results through several empirical studies 
    more » « less
  5. Fairness in classification has become an increasingly relevant and controversial issue as com- puters replace humans in many of today’s classification tasks. In particular, a subject of much recent debate is that of finding, and subsequently achieving, suitable definitions of fairness in an algorithmic context. In this work, following the work of Hardt et al. (NIPS’16), we consider and formalize the task of sanitizing an unfair classifier C into a classifier C′ satisfying an approximate notion of “equalized odds” or fair treatment. Our main result shows how to take any (possibly unfair) classifier C over a finite outcome space, and transform it—by just perturbing the out- put of C—according to some distribution learned by just having black-box access to samples of labeled, and previously classified, data, to produce a classifier C′ that satisfies fair treatment; we additionally show that our derived classifier is near-optimal in terms of accuracy. We also experimentally evaluate the performance of our method. 
    more » « less