skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The holographic contributions to the sphere free energy
A bstract We study which bulk couplings contribute to the S 3 free energy F ( $$ \mathfrak{m} $$ m ) of three-dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories with holographic duals, potentially deformed by boundary real-mass parameters m. In particular, we show that F ( $$ \mathfrak{m} $$ m ) is independent of a large class of bulk couplings that include non-chiral F-terms and all D-terms. On the other hand, in general, F ( $$ \mathfrak{m} $$ m ) does depend non-trivially on bulk chiral F-terms, such as prepotential interactions, and on bulk real-mass terms. These conclusions can be reached solely from properties of the AdS super-algebra, $$ \mathfrak{osp} $$ osp (2|4). We also consider massive vector multiplets in AdS, which in the dual field theory correspond to long single-trace superconformal multiplets of spin zero. We provide evidence that F ( $$ \mathfrak{m} $$ m ) is insensitive to the vector multiplet mass and to the interaction couplings between the massive vector multiplet and massless ones. In particular, this implies that F ( $$ \mathfrak{m} $$ m ) does not contain information about scaling dimensions or OPE coefficients of single-trace long scalar $$ \mathcal{N} $$ N = 2 superconformal multiplets.  more » « less
Award ID(s):
1914860
PAR ID:
10380993
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
1
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We study the mass-deformed sphere free energy of three-dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories with holographic duals. Building on previous observations, we conjecture a proportionality relation between the sphere free energy on the boundary and the prepotential of the four-dimensional $$ \mathcal{N} $$ N = 2 supergravity theory in the bulk. We verify this formula by explicit computation in several examples of supergravity theories with vector multiplets and hypermultiplets. 
    more » « less
  2. null (Ed.)
    A bstract A superpotential deformation that is cubic in one of the chiral superfields of ABJM makes the latter theory flow into a new $$ \mathcal{N} $$ N = 2 superconformal phase. This is holographically dual to a warped AdS 4 × w S 7 solution of M-theory equipped with a squashed and stretched metric on S 7 . We determine the spectrum of spin-2 operators of the cubic deformation at low energies by computing the spectrum of Kaluza-Klein (KK) gravitons over the dual AdS 4 solution. We calculate, numerically, the complete graviton spectrum and, analytically, the spectrum of gravitons that belong to short multiplets. We also use group theory to assess the structure of the full KK spectrum, and conclude that $$ \mathcal{N} $$ N = 2 supermultiplets cannot be allocated KK level by KK level. This phenomenon, usually referred to as “space invaders scenario”, is also known to occur for another AdS 4 solution based on a different squashed S 7 . 
    more » « less
  3. null (Ed.)
    A bstract Exceptional Field Theory has been recently shown to be very powerful to compute Kaluza-Klein spectra. Using these techniques, the mass matrix of Kaluza-Klein vector perturbations about a specific class of AdS 4 solutions of D = 11 and massive type IIA supergravity is determined. These results are then employed to characterise the complete supersymmetric spectrum about some notable $$ \mathcal{N} $$ N = 2 and $$ \mathcal{N} $$ N = 3 AdS 4 solutions in this class, which are dual to specific three-dimensional superconformal Chern-Simons field theories. 
    more » « less
  4. A bstract We analyse the spectrum of Kaluza-Klein excitations above three distinct families of $$ \mathcal{N} $$ N = 1 AdS 4 solutions of type IIB supergravity of typically non-geometric, S-fold type that have been recently found. For all three families, we provide the complete algebraic structure of their spectra, including the content of OSp(4|1) multiplets at all Kaluza-Klein levels and their charges under the residual symmetry groups. We also provide extensive results for the multiplet dimensions using new methods derived from exceptional field theory, including complete, analytic results for one of the families. All three spectra show periodicity in the moduli that label the corresponding family of solutions. Finally, the compactness of these moduli is verified in some cases at the level of the fully-fledged type IIB uplifted solutions. 
    more » « less
  5. A bstract We develop the gauge theory formulation of $$ \mathcal{N} $$ N = 1 Jackiw-Teitelboim supergravity in terms of the underlying OSp(1|2 , ℝ) supergroup, focusing on boundary dynamics and the exact structure of gravitational amplitudes. We prove that the BF description reduces to a super-Schwarzian quantum mechanics on the holographic boundary, where boundary-anchored Wilson lines map to bilocal operators in the super-Schwarzian theory. A classification of defects in terms of monodromies of OSp(1|2 , ℝ) is carried out and interpreted in terms of character insertions in the bulk. From a mathematical perspective, we construct the principal series representations of OSp(1|2 , ℝ) and show that whereas the corresponding Plancherel measure does not match the density of states of $$ \mathcal{N} $$ N = 1 JT supergravity, a restriction to the positive subsemigroup OSp + (1|2 , ℝ) yields the correct density of states, mirroring the analogous results for bosonic JT gravity. We illustrate these results with several gravitational applications, in particular computing the late-time complexity growth in JT supergravity. 
    more » « less