skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fluid–fluid phase transitions in a chiral molecular model
Molecular chirality is a fundamental phenomenon, underlying both life as we know it and industrial pharmaceutical syntheses. Understanding the symmetry breaking phase transitions exhibited by many chiral molecular substances provides basic insights for topics ranging from the origin of life to the rational design of drug manufacturing processes. In this work, we have performed molecular dynamics simulations to investigate the fluid–fluid phase transitions of a flexible three-dimensional four-site chiral molecular model developed by Latinwo et al. [J. Chem. Phys. 145, 154503 (2016)] and Petsev et al. [J. Chem. Phys. 155, 084105 (2021)]. By introducing a bias favoring local homochiral vs heterochiral interactions, the system exhibits a phase transition from a single achiral phase to a single chiral phase that undergoes infrequent interconversion between the two thermodynamically identical chiral states: the L-rich and D-rich phases. According to the phase rule, this reactive binary system has two independent degrees of freedom and exhibits a density-dependent critical locus. Below the liquid–liquid critical locus, there exists a first-order vapor–liquid coexistence region with a single independent degree of freedom. Our results provide basic thermodynamic and kinetic insights for understanding many-body chiral symmetry breaking phenomena.  more » « less
Award ID(s):
1856704
PAR ID:
10381029
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
8
ISSN:
0021-9606
Page Range / eLocation ID:
084501
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recently, Gallo et al. ( Chem. Sci., 2019, 10, 2566) investigated whether the previously reported oligomerization of isoprene vapor on the surface of pH < 4 water in an electrospray ionization (ESI) mass spectrometer ( J. Phys. Chem. A, 2012, 116, 6027 and Phys. Chem. Chem. Phys., 2018, 20, 15400) would also proceed in liquid isoprene–acidic water emulsions. Gallo et al. hypothesized that emulsified liquid isoprene would oligomerize on the surface of acidic water because, after all, isoprene, liquid or vapor, is always a hydrophobe. In their emulsion experiments, isoprene oligomers were to be detected by ex situ proton magnetic resonance ( 1 H-NMR) spectrometry. 
    more » « less
  2. While it has long been recognized that Lagrangian drift at the ocean surface plays a critical role in the kinematics and dynamics of upper ocean processes, only recently has the contribution of wave breaking to this drift begun to be investigated through direct numerical simulations (Deike et al. ,  J. Fluid Mech. , vol. 829, 2017, pp. 364–391; Pizzo et al. ,  J. Phys. Oceanogr. , vol. 49(4), 2019, pp. 983–992). In this work, laboratory measurements of the surface Lagrangian transport due to focusing deep-water non-breaking and breaking waves are presented. It is found that wave breaking greatly enhances mass transport, compared to non-breaking focusing wave packets. These results are in agreement with the direct numerical simulations of Deike  et al. ( J. Fluid Mech. , vol. 829, 2017, pp. 364–391), and the increased transport due to breaking agrees with their scaling argument. In particular, the transport at the surface scales with $$S$$ , the linear prediction of the maximum slope at focusing, while the surface transport due to non-breaking waves scales with $$S^{2}$$ , in agreement with the classical Stokes prediction. 
    more » « less
  3. Correction for ‘Reversible electrowetting transitions on superhydrophobic surfaces’ by D. Vanzo et al. , Phys. Chem. Chem. Phys. , 2021, 23 , 27005–27013, DOI:10.1039/D1CP04220C. 
    more » « less
  4. In this paper, we analyze the detailed quantum-classical behavior of two alternative approaches to simulating molecular dynamics with electronic transitions: the popular fewest switches surface hopping (FSSH) method, introduced by Tully in 1990 [Tully, \textit{J.~Chem.~Phys.}, 1990, \textbf{93}, 1061] and our recently developed quantum trajectory surface hopping (QTSH) method [Martens, \textit{J.~Phys.~Chem.~A}, 2019 \textbf{123}, 1110]. Both approaches employ an independent ensemble of trajectories that undergo stochastic transitions between electronic surfaces. The methods differ in their treatment of energy conservation, with FSSH imposing conservation of the classical kinetic plus potential energy by rescaling of the classical momenta when a surface hop occurs, while QTSH incorporates quantum forces throughout the dynamics which lead naturally to the conservation of the full quantum-classical energy. We investigate the population transfer and energy budget of the surface hopping methods for several simple model systems and compare with exact quantum result. In addition, the detailed dynamics of the trajectory ensembles in phase space are compared with the quantum evolution in the Wigner representation. Conclusions are drawn. 
    more » « less
  5. Correction for ‘High pressure single-molecule FRET studies of the lysine riboswitch: cationic and osmolytic effects on pressure induced denaturation’ by Hsuan-Lei Sung et al. , Phys. Chem. Chem. Phys. , 2020, DOI: 10.1039/d0cp01921f. 
    more » « less