skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1856704

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Much attention has been devoted to water’s metastable phase behavior, including polyamorphism (multiple amorphous solid phases), and the hypothesized liquid-liquid transition and associated critical point. However, the possible relationship between these phenomena remains incompletely understood. Using molecular dynamics simulations of the realistic TIP4P/2005 model, we found a striking signature of the liquid-liquid critical point in the structure of water glasses, manifested as a pronounced increase in long-range density fluctuations at pressures proximate to the critical pressure. By contrast, these signatures were absent in glasses of two model systems that lack a critical point. We also characterized the departure from equilibrium upon vitrification via the non-equilibrium index; water-like systems exhibited a strong pressure dependence in this metric, whereas simple liquids did not. These results reflect a surprising relationship between the metastable equilibrium phenomenon of liquid-liquid criticality and the non-equilibrium structure of glassy water, with implications for our understanding of water phase behavior and glass physics. Our calculations suggest a possible experimental route to probing the existence of the liquid-liquid transition in water and other fluids.

     
    more » « less
  2. Molecular chirality is a fundamental phenomenon, underlying both life as we know it and industrial pharmaceutical syntheses. Understanding the symmetry breaking phase transitions exhibited by many chiral molecular substances provides basic insights for topics ranging from the origin of life to the rational design of drug manufacturing processes. In this work, we have performed molecular dynamics simulations to investigate the fluid–fluid phase transitions of a flexible three-dimensional four-site chiral molecular model developed by Latinwo et al. [J. Chem. Phys. 145, 154503 (2016)] and Petsev et al. [J. Chem. Phys. 155, 084105 (2021)]. By introducing a bias favoring local homochiral vs heterochiral interactions, the system exhibits a phase transition from a single achiral phase to a single chiral phase that undergoes infrequent interconversion between the two thermodynamically identical chiral states: the L-rich and D-rich phases. According to the phase rule, this reactive binary system has two independent degrees of freedom and exhibits a density-dependent critical locus. Below the liquid–liquid critical locus, there exists a first-order vapor–liquid coexistence region with a single independent degree of freedom. Our results provide basic thermodynamic and kinetic insights for understanding many-body chiral symmetry breaking phenomena. 
    more » « less
  3. The hypothesis that the anomalous behavior of liquid water is related to the existence of a second critical point in deeply supercooled states has long been the subject of intense debate. Recent, sophisticated experiments designed to observe the transformation between the two subcritical liquids on nano- and microsecond time scales, along with demanding numerical simulations based on classical (rigid) models parameterized to reproduce thermodynamic properties of water, have provided support to this hypothesis. A stronger numerical proof requires demonstrating that the critical point, which occurs at temperatures and pressures far from those at which the models were optimized, is robust with respect to model parameterization, specifically with respect to incorporating additional physical effects. Here, we show that a liquid–liquid critical point can be rigorously located also in the WAIL model of water [Pinnick et al., J. Chem. Phys. 137, 014510 (2012)], a model parameterized using ab initio calculations only. The model incorporates two features not present in many previously studied water models: It is both flexible and polarizable, properties which can significantly influence the phase behavior of water. The observation of the critical point in a model in which the water–water interaction is estimated using only quantum ab initio calculations provides strong support to the viewpoint according to which the existence of two distinct liquids is a robust feature in the free energy landscape of supercooled water. 
    more » « less
  4. null (Ed.)
  5. The hypothesis that water has a second critical point at deeply supercooled conditions was formulated to provide a thermodynamically consistent interpretation of numerous experimental observations. A large body of work has been devoted to verifying or falsifying this hypothesis, but no unambiguous experimental proof has yet been found. Here, we use histogram reweighting and large-system scattering calculations to investigate computationally two molecular models of water, TIP4P/2005 and TIP4P/Ice, widely regarded to be among the most accurate classical force fields for this substance. We show that both models have a metastable liquid-liquid critical point at deeply supercooled conditions and that this critical point is consistent with the three-dimensional Ising universality class.

     
    more » « less