Growing concerns about the global warming potential of hydrofluorocarbons (HFCs) has led to increasing interest in developing technologies to effectively recover and recycle these refrigerants. Ionic liquids (ILs) have shown great potential to selectively separate azeotropic HFC gas mixtures, such as R-410A composed of HFC-32 (CH2F2) and HFC-125 (CHF2CF3), based on solubility differences between the refrigerant gases in the respective IL. Isothermal vapor−liquid equilibrium (VLE) data for HFC-32 and HFC-125 were measured in ILs containing fluorinated and nonfluorinated anions using a gravimetric microbalance at pressures ranging from 0.05 to 1.0 MPa and a temperature of 298.15 K. The van der Waals equation of state (EoS) model was applied to correlate the experimental solubility data of each HFC refrigerant/IL mixture. The solubility differences between HFC-32 and HFC-125 vary significantly depending on the choice of IL. The diffusion coefficients for both HFC refrigerants in each IL were calculated by fitting Fick’s law to time-dependent absorption data. HFC-32 has a higher diffusivity in most ILs tested because of its smaller molecular radius relative to HFC-125. Based on the calculated Henry’s law constants and the mass uptake for each system, [C6C1im][Cl] was found to have the highest selectivity difference for separating R-410A at 298.15more »
Separation of Azeotropic Hydrofluorocarbon Refrigerant Mixtures: Thermodynamic and Kinetic Modeling for Binary Adsorption of HFC-32 and HFC-125 on Zeolite 5A
- Award ID(s):
- 1920252
- Publication Date:
- NSF-PAR ID:
- 10381032
- Journal Name:
- Langmuir
- Volume:
- 38
- Issue:
- 35
- Page Range or eLocation-ID:
- 10836 to 10853
- ISSN:
- 0743-7463
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Growing concerns about the global warming potential (GWP) of hydrofluorocarbons (HFCs) has led to increasing interest in developing technologies to effectively recover and recycle these refrigerants. Ionic liquids (ILs) have shown great potential to selectively separate azeotropic HFC gas mixtures such as R-410A composed of HFC-32 (CH2F2) and HFC-125 (CHF2CF3), based on solubility differences between the refrigerant gases in the respective IL. Isothermal vapor−liquid equilibrium (VLE) data for HFC-32 and HFC-125 were measured in ILs containing fluorinated and non-fluorinated anions using a gravimetric microbalance at pressures ranging from 0.05 to 1.0 MPa and a temperature of 298.15 K. The van der Waals Equation of State (EoS) model was applied to correlate the experimental solubility data of each HFC refrigerant / IL mixture. The solubility differences between HFC-32 and HFC-125 vary significantly depending on the choice of IL. The diffusion coefficients for both HFC refrigerants in each IL were calculated by fitting Fick’s law to time-dependent absorption data. HFC-32 has a higher diffusivity in most ILs tested due to its smaller molecular radius relative to HFC-125. Based on the calculated Henry’s law constants and the mass uptake for each system, the [C6C1im][Cl] was found to have the highest selectivity difference formore »