skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Statistics of Elsasser Increments in Solar Wind and Magnetohydrodynamic Turbulence
Abstract In this Letter we investigate the dependency with scale of the empirical probability distribution functions (PDF) of Elsasser increments using large sets ofWINDdata (collected between 1995 and 2017) near 1 au. The empirical PDF are compared to the ones obtained from high-resolution numerical simulations of steadily driven, homogeneous reduced MHD turbulence on a 20483rectangular mesh. A large statistical sample of Alfvénic increments is obtained by using conditional analysis based on the solar wind average properties. The PDF tails obtained from observations and numerical simulations are found to have exponential behavior in the inertial range, with an exponential decrement that satisfies power laws of the formαl∝l−μ, wherelis the scale size, withμbetween 0.17 and 0.25 for observations and 0.43 for simulations. PDF tails were extrapolated assuming their exponential behavior extends to arbitrarily large increments in order to determine structure function scaling laws at very high orders. Our results point to potentially universal scaling laws governing the PDF of Elsasser increments and to an alternative approach to investigate high-order statistics in solar wind observations.  more » « less
Award ID(s):
1752827
PAR ID:
10381097
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
940
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L20
Size(s):
Article No. L20
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT In this work, we find empirical evidence that the scale-dependent statistical properties of solar wind and magnetohydrodynamic (MHD) turbulence can be described in terms of a family of parametric probability distribution functions (PDFs) known as Normal Inverse Gaussian (NIG). Understanding these PDFs is one of the most important goals in turbulence theory, as they are inherently connected to the intermittent properties of solar wind turbulence. We investigate the properties of PDFs of Elsasser increments based on a large statistical sample from solar wind observations and high-resolution numerical simulations of MHD turbulence. In order to measure the PDFs and their corresponding properties, three experiments are presented: fast and slow solar wind for experimental data and a simulation of reduced MHD (RMHD) turbulence. Conditional statistics on a 23-yr-long sample of WIND data near 1 au and high-resolution pseudo-spectral simulation of steadily driven RMHD turbulence on a $2048^3$ mesh are used to construct scale-dependent PDFs. The empirical PDFs are fitted to NIG distributions, which depend on four free parameters. Our analysis shows that NIG distributions accurately capture the evolution of the PDFs, with scale-dependent parameters, from large scales characterized by a Gaussian distribution, turning to exponential tails within the inertial range and stretched exponentials at dissipative scales. We also show that empirically-measured NIG parameters exhibit well-defined scaling properties that are similar across the three empirical data sets, which may be indicative of universal behaviour. 
    more » « less
  2. Coronal mass ejections (CMEs) are often associated with X-ray (SXR) flares powered by magnetic reconnection in the low corona, while the CME shocks in the upper corona and interplanetary (IP) space accelerate electrons often producing the type II radio bursts. The CME and the reconnection event are part of the same energy release process as highlighted by the correlation between reconnection flux (ϕrec) that quantifies the strength of the released magnetic free energy during the SXR flare, and the CME kinetic energy that drives the IP shocks leading to type II bursts. Unlike the Sun, these physical parameters cannot be directly inferred in stellar observations. Hence, scaling laws between unresolved sun-as-a-star observables, namely SXR luminosity (LX) and type II luminosity (LR), and the physical properties of the associated dynamical events are crucial. Such scaling laws also provide insights into the interconnections between the particle acceleration processes across low-corona to IP space during solar-stellar “flare-CME-type II” events. Using long-term solar data in the SXR to radio waveband, we derived a scaling law between two novel power metrics for the flare and CME-associated processes. The metrics of “flare power” (Pflare = √(LXϕrec)) and “CME power” (PCME = √(LRVCME2)), whereVCMEis the CME speed, scale asPflare ∝ PCME0.76 ± 0.04. In addition,LXandϕrecshow power-law trends withPCMEwith indices of 1.12 ± 0.05 and 0.61 ± 0.05, respectively. These power laws help infer the spatially resolved physical parameters,VCMEandϕrec, from disk-averaged observables,LXandLRduring solar-stellar flare-CME-type II events. 
    more » « less
  3. Abstract Cell size is broadly applied as a convenient parameterization of ecosystem models and is widely applicable to constrain the activities of organisms spanning large size ranges. However, the size structure of the majority of the marine picoplankton assemblage is narrow and beneath the lower size limit of the empirical allometric relationships established so far (typically >1 μm). We applied a fine‐resolution (0.05 μm increments) size fractionation method to estimate the size dependence of metabolic activities of picoplankton populations in the 0.10–1.00 μm size interval within the surface North Pacific Subtropical Gyre microbial assemblage. Group‐specific carbon retained on each filter was quantified by flow cytometric conversion of light scatter to cellular carbon quotas. Median carbon quotas were 25.7, 22.6, and 5.9 fg C cell−1for populations of the picocyanobacteriumProchlorococcus, high‐scatter heterotrophs, and low‐scatter heterotrophs, respectively. Carbon‐specific rates of primary production as a function of cell size, using the14C method, and phosphate transport, using33P radiotracers, resulted in negative power scalings (b) within populations ofProchlorococcusand heterotrophs ofb = −1.3 andb = −1.1, respectively. These findings are in contrast to the positive empirical power scaling comprising the broader and larger prokaryote category (b = 0.7) and point to within‐population variability in cell physiology and metabolism for these important microbial groups. 
    more » « less
  4. ABSTRACT Numerical simulations are used to investigate large-scale (mean) magnetic field generation in rotating spherical dynamos. Beyond a certain threshold, we find that the magnitude of the mean magnetic field becomes nearly independent of the system rotation rate and buoyancy forcing. The analysis suggests that this saturation arises from the Malkus-Proctor mechanism in which a Coriolis-Lorentz force balance is achieved in the zonal component of the mean momentum equation. When based on the large-scale magnetic field, the Elsasser number is near unity in the saturated regime. The results show that the large and small magnetic field saturate via distinct mechanisms in rapidly rotating dynamos, and that only the axisymmetric component of the magnetic field appears to follow an Elsasser number scaling. 
    more » « less
  5. Abstract We present JWST Early Release Science coronagraphic observations of the super-Jupiter exoplanet, HIP 65426b, with the Near-Infrared Camera (NIRCam) from 2 to 5μm, and with the Mid-Infrared Instrument (MIRI) from 11 to 16μm. At a separation of ∼0.″82 (87 31 + 108 au), HIP 65426b is clearly detected in all seven of our observational filters, representing the first images of an exoplanet to be obtained by JWST, and the first-ever direct detection of an exoplanet beyond 5μm. These observations demonstrate that JWST is exceeding its nominal predicted performance by up to a factor of 10, depending on separation and subtraction method, with measured 5σcontrast limits of ∼1 × 10−5and ∼2 × 10−4at 1″ for NIRCam at 4.4μm and MIRI at 11.3μm, respectively. These contrast limits provide sensitivity to sub-Jupiter companions with masses as low as 0.3MJupbeyond separations of ∼100 au. Together with existing ground-based near-infrared data, the JWST photometry are fit well by aBT-SETTLatmospheric model from 1 to 16μm, and they span ∼97% of HIP 65426b's luminous range. Independent of the choice of model atmosphere, we measure an empirical bolometric luminosity that is tightly constrained between log L bol / L = −4.31 and −4.14, which in turn provides a robust mass constraint of 7.1 ± 1.2MJup. In totality, these observations confirm that JWST presents a powerful and exciting opportunity to characterize the population of exoplanets amenable to high-contrast imaging in greater detail. 
    more » « less