We conduct a systematic search for high-redshift galaxy overdensities at 4.9 <
We present JWST Early Release Science coronagraphic observations of the super-Jupiter exoplanet, HIP 65426b, with the Near-Infrared Camera (NIRCam) from 2 to 5
- Award ID(s):
- 1910969
- PAR ID:
- 10480630
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Astrophysical Journal Letters
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 951
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z spec< 8.9 in both the Great Observatories Origins Deep Survey (GOODS)-N and GOODS-S fields using James Webb Space Telescope/Near-Infrared Camera (JWST/NIRCam) imaging from the JWST Advanced Deep Extragalactic Survey and JWST Extragalactic Medium-band Survey in addition to JWST/NIRCam wide field slitless spectroscopy from the First Reionization Epoch Spectroscopic Complete Survey. High-redshift galaxy candidates are identified using Hubble Space Telescope + JWST photometry spanningλ = 0.4–5.0μ m. We confirmed the redshifts for roughly a third of these galaxies using JWST spectroscopy overλ = 3.9–5.0μ m through identification of either Hα or around the best-fit photometric redshift. The rest-ultraviolet magnitudes and continuum slopes of these galaxies were inferred from the photometry: the brightest and reddest objects appear in more dense environments and thus are surrounded by more galaxy neighbors than their fainter and bluer counterparts, suggesting accelerated galaxy evolution within overdense environments. We find 17 significant (δ gal≥ 3.04,N gal≥ 4) galaxy overdensities across both fields (seven in GOODS-N and 10 in GOODS-S), including the two highest redshift spectroscopically confirmed galaxy overdensities to date at and (representing densities around ∼6 and ∼12 times that of a random volume). We estimate the total halo mass of these large-scale structures to be using an empirical stellar mass-to-halo mass relation, which are likely underestimates as a result of incompleteness. These protocluster candidates are expected to evolve into massive galaxy clusters with byz = 0. -
Abstract HIP 65426 hosts a young giant planet that has become the first exoplanet directly imaged with JWST. Using time-series photometry from the Transiting Exoplanet Survey Satellite (TESS), we classify HIP 65426 as a high-frequency
δ Scuti pulsator with a possible large-frequency separation of Δν = 7.23 ± 0.02 cycles day−1. We check the TESS data for pulsation-timing variations and use the nondetection to estimate a 95% dynamical mass upper limit of 12.8M Jupfor HIP 65426 b. We also identify a low-frequency region of signal that we interpret as stellar latitudinal differential rotation with two rapid periods of 7.85 ± 0.08 hr and 6.67 ± 0.04 hr. We use our TESS rotation periods together with published values of radius and to jointly measure the inclination of HIP 65426 to °. Our stellar inclination is consistent with the orbital inclination of HIP 65426 b ( °) at the 68% percent level based on our orbit fit using published relative astrometry. The lack of significant evidence for spin–orbit misalignment in the HIP 65426 system supports an emerging trend consistent with preferential alignment between imaged long-period giant planets and their host stars. -
Abstract We report the discovery of two transiting planets around the bright (
V = 9.9 mag) main-sequence F7 star TOI-1670 by the Transiting Exoplanet Survey Satellite. TOI-1670 b is a sub-Neptune (R ⊕) on a 10.9 day orbit, and TOI-1670 c is a warm Jupiter (R Jup) on a 40.7 day orbit. Using radial velocity observations gathered with the Tull Coudé Spectrograph on the Harlan J. Smith telescope and HARPS-N on the Telescopio Nazionale Galileo, we find a planet mass ofM Jupfor the outer warm Jupiter, implying a mean density of g cm−3. The inner sub-Neptune is undetected in our radial velocity data (M b< 0.13M Jupat the 99% confidence level). Multiplanet systems like TOI-1670 hosting an outer warm Jupiter on a nearly circular orbit ( ) and one or more inner coplanar planets are more consistent with “gentle” formation mechanisms such as disk migration or in situ formation rather than high-eccentricity migration. Of the 11 known systems with a warm Jupiter and a smaller inner companion, eight (73%) are near a low-order mean-motion resonance, which can be a signature of migration. TOI-1670 joins two other systems (27% of this subsample) with period commensurabilities greater than 3, a common feature of in situ formation or halted inward migration. TOI-1670 and the handful of similar systems support a diversity of formation pathways for warm Jupiters. -
A bstract A search for the fully reconstructed
$$ {B}_s^0 $$ → μ +μ − γ decay is performed at the LHCb experiment using proton-proton collisions at = 13 TeV corresponding to an integrated luminosity of 5$$ \sqrt{s} $$ . 4 fb− 1. No significant signal is found and upper limits on the branching fraction in intervals of the dimuon mass are set$$ {\displaystyle \begin{array}{cc}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[2{m}_{\mu },1.70\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<7.7\times {10}^{-8},&\ m\left({\mu}^{+}{\mu}^{-}\right)\in \left[\textrm{1.70,2.88}\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[3.92,{m}_{B_s^0}\right]\textrm{GeV}/{c}^2,\end{array}} $$ at 95% confidence level. Additionally, upper limits are set on the branching fraction in the [2
m μ , 1. 70] GeV/c 2dimuon mass region excluding the contribution from the intermediateϕ (1020) meson, and in the region combining all dimuon-mass intervals. -
Abstract We conduct a systematic tidal disruption event (TDE) demographics analysis using the largest sample of optically selected TDEs. A flux-limited, spectroscopically complete sample of 33 TDEs is constructed using the Zwicky Transient Facility over 3 yr (from 2018 October to 2021 September). We infer the black hole (BH) mass (
M BH) with host galaxy scaling relations, showing that the sampleM BHranges from 105.1M ⊙to 108.2M ⊙. We developed a survey efficiency corrected maximum volume method to infer the rates. The rest-frameg -band luminosity function can be well described by a broken power law of , withL bk= 1043.1erg s−1. In the BH mass regime of 105.3≲ (M BH/M ⊙) ≲ 107.3, the TDE mass function follows , which favors a flat local BH mass function ( ). We confirm the significant rate suppression at the high-mass end (M BH≳ 107.5M ⊙), which is consistent with theoretical predictions considering direct capture of hydrogen-burning stars by the event horizon. At a host galaxy mass ofM gal∼ 1010M ⊙, the average optical TDE rate is ≈3.2 × 10−5galaxy−1yr−1. We constrain the optical TDE rate to be [3.7, 7.4, and 1.6] × 10−5galaxy−1yr−1in galaxies with red, green, and blue colors.