skip to main content

Title: Short GRB Host Galaxies. I. Photometric and Spectroscopic Catalogs, Host Associations, and Galactocentric Offsets
Abstract

We present a comprehensive optical and near-infrared census of the fields of 90 short gamma-ray bursts (GRBs) discovered in 2005–2021, constituting all short GRBs for which host galaxy associations are feasible (≈60% of the total Swift short GRB population). We contribute 274 new multi-band imaging observations across 58 distinct GRBs and 26 spectra of their host galaxies. Supplemented by literature and archival survey data, the catalog contains 542 photometric and 42 spectroscopic data sets. The photometric catalog reaches 3σdepths of ≳24–27 mag and ≳23–26 mag for the optical and near-infrared bands, respectively. We identify host galaxies for 84 bursts, in which the most robust associations make up 56% (50/90) of events, while only a small fraction, 6.7%, have inconclusive host associations. Based on new spectroscopy, we determine 18 host spectroscopic redshifts with a range ofz≈ 0.15–1.5 and find that ≈23%–41% of Swift short GRBs originate fromz> 1. We also present the galactocentric offset catalog for 84 short GRBs. Taking into account the large range of individual measurement uncertainties, we find a median of projected offset of ≈7.7 kpc, for which the bursts with the most robust associations have a smaller median of ≈4.8 kpc. Our catalog captures more high-redshift more » and low-luminosity hosts, and more highly offset bursts than previously found, thereby diversifying the population of known short GRB hosts and properties. In terms of locations and host luminosities, the populations of short GRBs with and without detectable extended emission are statistically indistinguishable. This suggests that they arise from the same progenitors, or from multiple progenitors, which form and evolve in similar environments. All of the data products are available on the Broadband Repository for Investigating Gamma-Ray Burst Host Traits website.

« less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Publication Date:
NSF-PAR ID:
10381103
Journal Name:
The Astrophysical Journal
Volume:
940
Issue:
1
Page Range or eLocation-ID:
Article No. 56
ISSN:
0004-637X
Publisher:
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using theProspectorstellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift ofz=0.640.32+0.83(68% confidence), including nine photometric redshifts atz≳ 1. We further find a median mass-weighted age oftm=0.80.53+2.71Gyr, stellar mass of log(M*/M) =9.690.65+0.75, star formation rate of SFR =1.441.35+9.37Myr−1, stellar metallicity of log(Z*/Z) =0.380.42+0.44, and dust attenuation ofAV=0.430.36+0.85mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution,more »with a fast-merging channel atz> 1 and a decreased neutron star binary formation efficiency from high to low redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the Broadband Repository for Investigating Gamma-ray burst Host Traits website.

    « less
  2. ABSTRACT

    A significant fraction (30 per cent) of well-localized short gamma-ray bursts (sGRBs) lack a coincident host galaxy. This leads to two main scenarios: (i) that the progenitor system merged outside of the visible light of its host, or (ii) that the sGRB resided within a faint and distant galaxy that was not detected by follow-up observations. Discriminating between these scenarios has important implications for constraining the formation channels of neutron star mergers, the rate and environments of gravitational wave sources, and the production of heavy elements in the Universe. In this work, we present the results of our observing campaign targeted at 31 sGRBs that lack a putative host galaxy. Our study effectively doubles the sample of well-studied sGRB host galaxies, now totaling 72 events of which $28{{\ \rm per\ cent}}$ lack a coincident host to deep limits (r ≳ 26 or F110W ≳ 27 AB mag), and represents the largest homogeneously selected catalogue of sGRB offsets to date. We find that 70 per cent of sub-arcsecond localized sGRBs occur within 10 kpc of their host’s nucleus, with a median projected physical offset of 5.6 kpc. Using this larger population, we discover an apparent redshift evolution in their locations: bursts at low-z occur at 2 × larger offsets comparedmore »to those at z > 0.5. This evolution could be due to a physical evolution of the host galaxies themselves or a bias against faint high-z galaxies. Furthermore, we discover a sample of hostless sGRBs at z ≳ 1 that are indicative of a larger high-z population, constraining the redshift distribution and disfavoring lognormal delay time models.

    « less
  3. We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z  = 6.312 and its luminous X-ray and optical afterglow. Following the detection by Swift and Konus- Wind , we obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of E iso = 1.27 −0.19 +0.20 × 10 54 erg, GRB 210905A lies in the top ∼7% of gamma-ray bursts (GRBs) in the Konus- Wind catalogue in terms of energy released. Its afterglow is among the most luminous ever observed, and, in particular, it is one of the most luminous in the optical at t  ≳ 0.5 d in the rest frame. The afterglow starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ∼46.2 ± 16.3 d (6.3 ± 2.2 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band duemore »to a constant contribution from the host galaxy and potentially from a foreground intervening galaxy. In particular, the host galaxy is only the fourth GRB host at z  > 6 known to date. By assuming a number density n  = 1 cm −3 and an efficiency η  = 0.2, we derived a half-opening angle of 8.4 ° ±1.0°, which is the highest ever measured for a z  ≳ 6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of ≃1 × 10 52 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent within 2 σ with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift.« less
  4. We have conducted the most sensitive low frequency (below 100 MHz) search to date for prompt, low-frequency radio emission associated with short-duration gamma-ray bursts (GRBs), using the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA). The OVRO-LWA's nearly full-hemisphere field-of-view (∼20,000 square degrees) allows us to search for low-frequency (sub-100 MHz) counterparts for a large sample of the subset of GRB events for which prompt radio emission has been predicted. Following the detection of short GRB 170112A by Swift, we used all-sky OVRO-LWA images spanning one hour prior to and two hours following the GRB event to search for a transient source coincident with the position of GRB 170112A. We detect no transient source, with our most constraining 1σ flux density limit of 650 mJy for frequencies spanning 27 MHz−84 MHz. We place constraints on a number of models predicting prompt, low-frequency radio emission accompanying short GRBs and their potential binary neutron star merger progenitors, and place an upper limit of Lradio/Lγ≲7×10−16 on the fraction of energy released in the prompt radio emission. These observations serve as a pilot effort for a program targeting a wider sample of both short and long GRBs with the OVRO-LWA, including bursts with confirmedmore »redshift measurements which are critical to placing the most constraining limits on prompt radio emission models, as well as a program for the follow-up of gravitational wave compact binary coalescence events detected by advanced LIGO and Virgo.« less
  5. Abstract We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate.