skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems
Oceans are brimming with life invisible to our eyes, a myriad of species of bacteria, viruses and other microscopic organisms essential for the health of the planet. These ‘marine plankton’ are unable to swim against currents and should therefore be constantly on the move, yet previous studies have suggested that distinct species of plankton may in fact inhabit different oceanic regions. However, proving this theory has been challenging; collecting plankton is logistically difficult, and it is often impossible to distinguish between species simply by examining them under a microscope. However, within the last decade, a research schooner called Tara has travelled the globe to gather thousands of plankton samples. At the same time, advances in genomics have made it possible to identify species based only on fragments of their DNA sequence. To understand the hidden geography of plankton communities in Earth’s oceans, Richter et al. pored over DNA from the Tara Oceans expedition. This revealed that, despite being unable to resist the flow of water, various planktonic species which live close to the surface manage to occupy distinct, stable provinces shaped by currents. Different sizes of plankton are distributed in different sized provinces, with the smallest organisms tending to inhabit the smallest areas. Comparing DNA similarities and speeds of currents at the ocean surface revealed how these might stretch and mix plankton communities. Plankton play a critical role in the health of the ocean and the chemical cycles of planet Earth. These results could allow deeper investigation by marine modellers, ecologists, and evolutionary biologists. Meanwhile, work is already underway to investigate how climate change might impact this hidden geography.  more » « less
Award ID(s):
1829831
PAR ID:
10381121
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
eLife
Volume:
11
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Tara Oceans program has delivered major advances in our knowledge of ocean plankton diversity and complexity, shedding light on key interactions that explain their success on a planetary scale. In this issue, Caputi et al. (2019,https://doi.org/10.1029/2018GB006022) further contribute to this knowledge through combining comprehensive bio‐oceanographic genomic and transcriptomic Tara Oceans data sets with iron distributions derived from two global‐scale biogeochemical models. Their findings reveal the prevalence of iron as a limiting nutrient in pelagic ecosystems at both local and global scales, exerting a considerable force that drives plankton evolution and shapes community structure. Integration of omics data (i.e., genomics, transcriptomics, proteomics, and metabolomics) with oceanographic properties and biogeochemical models will transform our view of the ocean ecosystem and its role on a changing planet. 
    more » « less
  2. Population genomics has provided unprecedented opportunities to unravel the mysteries of marine organisms in the oceans' depths. The world's oceans, which make up 70% of our planet, encompass diverse habitats and host numerous unexplored populations and species. Population genomics studies of marine organisms are rapidly emerging and have the potential to transform our understanding of marine populations, species, and ecosystems, providing insights into how these organisms are evolving and how they respond to different stimuli and environments. This knowledge is critical for understanding the fundamental aspects of marine life, how marine organisms will respond to environmental changes, and how we can better protect and preserve marine biodiversity and resources. This book brings together leading experts in the field to address critical aspects of fundamental and applied research in marine species and share their research and insights crucial for understanding marine ecosystem diversity and function. It also discusses the challenges, opportunities and future perspectives of marine population genomics. 
    more » « less
  3. From the surface, the world’s oceans appear vast and boundless. Ocean currents, which can transport marine organisms thousands of kilometers, coupled with species that spend some or all of their life in the pelagic zone, the open sea, highlight the potential for well-mixed, panmictic marine populations. Yet these ocean habitats do harbor boundaries. In this largely three-dimensional marine environment, gradients form boundaries. These gradients include temperature, salinity, and oxygen gradients. Ocean currents also form boundaries between neighboring water masses even as they can break through barriers by transporting organisms huge distances. With the advent of next-generation sequencing approaches, which allow us to easily generate a large number of genomic markers, we are in an unprecedented position to study the effects of these potential oceanic boundaries and can ask how often and when do locally adapted marine populations evolve. This knowledge will inform our understanding of how marine organisms respond to climate change and affect how we protect marine diversity. In this chapter I first discuss the major boundaries present in the marine environment and the implications they have for marine organisms. Next, I discuss the how genomic approaches are impacting our understanding of genetic connectivity, ocean fisheries, and local adaptation, including the potential for epigenetic adaptation. I conclude with considerations for marine conservation and management and future prospects. 
    more » « less
  4. Chaetognatha are highly-effective predatory components of the marine planktonic assemblages. Many species exhibit disjunct biogeographical distributions throughout the global ocean, and thus serve as sentinel species for examining climate-driven changes in ocean circulation on zooplankton species, communities, and food webs. Of particular interest are ecological changes in the Arctic, a region being drastically affected by climate change. In this study, a 650 base-pair region of the mitochondrial cytochrome oxidase I (mtCOI) gene was sequenced for 131 individuals for the chaetognath Eukrohnia hamata collected from diverse regions throughout the Arctic. DNA sequence analysis was done to characterize population genetic diversity and structure, phylogeography (i.e., geographic distribution of genetic lineages within species), and connectivity among regional populations. High haplotype diversity (Hd) and significant (p <0.02) negative values for Fu’s and Li’s F statistic imply that E. hamata is undergoing population expansion.. Patterns and pathways of population connectivity examined to test several migration hypotheses revealed that pan-Arctic population connectivity followed the primary ocean currents. The reliance of this ecologically important zooplankton species on Arctic Ocean currents has implications for future warming conditions, which have the potential to modify these currents, resulting in altered biogeographical distributions and population connectivity of Arctic zooplankton. 
    more » « less
  5. Chaetognatha are highly-effective predatory components of the marine planktonic assemblages. Many species exhibit disjunct biogeographical distributions throughout the global ocean, and thus serve as sentinel species for examining climate-driven changes in ocean circulation on zooplankton species, communities, and food webs. Of particular interest are ecological changes in the Arctic, a region being drastically affected by climate change. In this study, a 650 base-pair region of the mitochondrial cytochrome oxidase I (mtCOI) gene was sequenced for 131 individuals for the chaetognath Eukrohnia hamata collected from diverse regions throughout the Arctic. DNA sequence analysis was done to characterize population genetic diversity and structure, phylogeography (i.e., geographic distribution of genetic lineages within species), and connectivity among regional populations. High haplotype diversity (Hd) and significant (p <0.02) negative values for Fu’s and Li’s F statistic imply that E. hamata is undergoing population expansion.. Patterns and pathways of population connectivity examined to test several migration hypotheses revealed that pan-Arctic population connectivity followed the primary ocean currents. The reliance of this ecologically important zooplankton species on Arctic Ocean currents has implications for future warming conditions, which have the potential to modify these currents, resulting in altered biogeographical distributions and population connectivity of Arctic zooplankton. 
    more » « less