skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Six-Degree-of-Freedom Localization With a 3-Axis Accelerometer and a 2-Axis Magnetometer for Magnetic Capsule Endoscopy
Award ID(s):
1830958
PAR ID:
10381195
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
7
Issue:
2
ISSN:
2377-3774
Page Range / eLocation ID:
2110 to 2115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recently proposed as a stable means of evaluating geometric compactness, theisoperimetric profileof a planar domain measures the minimum perimeter needed to inscribe a shape with prescribed area varying from 0 to the area of the domain. While this profile has proven valuable for evaluating properties of geographic partitions, existing algorithms for its computation rely on aggressive approximations and are still computationally expensive. In this paper, we propose a practical means of approximating the isoperimetric profile and show that for domains satisfying a“thick neck”condition, our approximation is exact. For more general domains, we show that our bound is still exact within a conservative regime and is otherwise an upper bound. Our method is based on a traversal of the medial axis which produces efficient and robust results. We compare our technique with the state‐of‐the‐art approximation to the isoperimetric profile on a variety of domains and show significantly tighter bounds than were previously achievable. 
    more » « less
  2. null (Ed.)
  3. ABSTRACT Nearly all fish have flexible bodies that bend as a result of internal muscular forces and external fluid forces that are dynamically coupled with the mechanical properties of the body. Swimming is therefore strongly influenced by the body's flexibility, yet we do not know how fish species vary in their flexibility and in their ability to modulate flexibility with muscle activity. A more fundamental problem is our lack of knowledge about how any of these differences in flexibility translate into swimming performance. Thus, flexibility represents a hidden axis of diversity among fishes that may have substantial impacts on swimming performance. Although engineers have made substantial progress in understanding these fluid–structure interactions using physical and computational models, the last biological review of these interactions and how they give rise to fish swimming was carried out more than 20 years ago. In this Review, we summarize work on passive and active body mechanics in fish, physical models of fish and bioinspired robots. We also revisit some of the first studies to explore flexural stiffness and discuss their relevance in the context of more recent work. Finally, we pose questions and suggest future directions that may help reveal important links between flexibility and swimming performance. 
    more » « less