Edge-assisted AR supports high-quality AR on resource-constrained mobile devices by offloading high-rate camera-captured frames to powerful GPU edge servers to perform heavy vision tasks. Since the result of an offloaded frame may not come back in the same frame interval, edge-assisted AR designs resort to local tracking on the last server returned result to generate more accurate result for the current frame. In such an offloading+local tracking paradigm, reducing the staleness of the last server returned result is critical to improving AR task accuracy. In this paper, we present MPCP, an online offloading scheduling framework that minimizes the staleness of server-returned result in edge-assisted AR by optimally pipelining network transfer of frames to the edge server and the Deep Neural Network inference on the edge server. MPCP is based on model predictive control (MPC). Our evaluation results show that MPCP reduces the depth estimation error by up to 10.0% compared to several baseline schemes.
more »
« less
SmartDet: Context-Aware Dynamic Control of Edge Task Offloading for Mobile Object Detection
Mobile devices such as drones and autonomous vehicles increasingly rely on object detection (OD) through deep neural networks (DNNs) to perform critical tasks such as navigation, target-tracking and surveillance, just to name a few. Due to their high complexity, the execution of these DNNs requires excessive time and energy. Low-complexity object tracking (OT) is thus used along with OD, where the latter is periodically applied to generate "fresh" references for tracking. However, the frames processed with OD incur large delays, which does not comply with real-time applications requirements. Offloading OD to edge servers can mitigate this issue, but existing work focuses on the optimization of the offloading process in systems where the wireless channel has a very large capacity. Herein, we consider systems with constrained and erratic channel capacity, and establish parallel OT (at the mobile device) and OD (at the edge server) processes that are resilient to large OD latency. We propose Katch-Up, a novel tracking mechanism that improves the system resilience to excessive OD delay. We show that this technique greatly improves the quality of the reference available to tracking, and boosts performance up to 33%. However, while Katch-Up significantly improves performance, it also increases the computing load of the mobile device. Hence, we design SmartDet, a low-complexity controller based on deep reinforcement learning (DRL) that learns to achieve the right trade-off between resource utilization and OD performance. SmartDet takes as input highly-heterogeneous context-related information related to the current video content and the current network conditions to optimize frequency and type of OD offloading, as well as Katch-Up utilization. We extensively evaluate SmartDet on a real-world testbed composed by a JetSon Nano as mobile device and a GTX 980 Ti as edge server, connected through a Wi-Fi link, to collect several network-related traces, as well as energy measurements. We consider a state-of-the-art video dataset (ILSVRC 2015 - VID) and state-of-the-art OD models (EfficientDet 0, 2 and 4). Experimental results show that SmartDet achieves an optimal balance between tracking performance – mean Average Recall (mAR) and resource usage. With respect to a baseline with full Katch-Up usage and maximum channel usage, we still increase mAR by 4% while using 50% less of the channel and 30% power resources associated with Katch-Up. With respect to a fixed strategy using minimal resources, we increase mAR by 20% while using Katch-Up on 1/3 of the frames.
more »
« less
- Award ID(s):
- 2134567
- PAR ID:
- 10381207
- Date Published:
- Journal Name:
- IEEE WoWMoM
- Page Range / eLocation ID:
- 357 to 366
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mobile devices such as smartphones and autonomous vehicles increasingly rely on deep neural networks (DNNs) to execute complex inference tasks such as image classification and speech recognition, among others. However, continuously executing the entire DNN on mobile devices can quickly deplete their battery. Although task offloading to cloud/edge servers may decrease the mobile device’s computational burden, erratic patterns in channel quality, network, and edge server load can lead to a significant delay in task execution. Recently, approaches based on split computing (SC) have been proposed, where the DNN is split into a head and a tail model, executed respectively on the mobile device and on the edge server. Ultimately, this may reduce bandwidth usage as well as energy consumption. Another approach, called early exiting (EE), trains models to embed multiple “exits” earlier in the architecture, each providing increasingly higher target accuracy. Therefore, the tradeoff between accuracy and delay can be tuned according to the current conditions or application demands. In this article, we provide a comprehensive survey of the state of the art in SC and EE strategies by presenting a comparison of the most relevant approaches. We conclude the article by providing a set of compelling research challenges.more » « less
-
Immersive applications such as Augmented Reality (AR) and Mixed Reality (MR) often need to perform multiple latency-critical tasks on every frame captured by the camera, which all require results to be available within the current frame interval. While such tasks are increasingly supported by Deep Neural Networks (DNNs) offloaded to edge servers due to their high accuracy but heavy computation, prior work has largely focused on offloading one task at a time. Compared to offloading a single task, where more frequent offloading directly translates into higher task accuracy, offloading of multiple tasks competes for shared edge server resources, and hence faces the additional challenge of balancing the offloading frequencies of different tasks to maximize the overall accuracy and hence app QoE. In this paper, we formulate this accuracy-centric multitask offloading problem, and present a framework that dynamically schedules the offloading of multiple DNN tasks from a mobile device to an edge server while optimizing the overall accuracy across tasks. Our design employs two novel ideas: (1) task-specific lightweight models that predict offloading accuracy drop as a function of offloading frequency and frame content, and (2) a general two-level control feedback loop that concurrently balances offloading among tasks and adapts between offloading and using local algorithms for each task. Evaluation results show that our framework improves the overall accuracy significantly in jointly offloading two core tasks in AR — depth estimation and odometry — by on average 7.6%–14.3% over the best baselines under different accuracy weight ratios.more » « less
-
With faster wireless networks and server GPUs, offloading high-accuracy but compute-intensive AR tasks implemented in Deep Neural Networks (DNNs) to edge servers offers a promising way to support high-QoE Augmented/Mixed Reality (AR/MR) applications. A cost-effective way for AR app vendors to deploy such edge-assisted AR apps to support a large user base is to use commercial Machine-Learning-as-a-Service (MLaaS) deployed at the edge cloud. To maximize cost-effectiveness, such an MLaaS provider faces a key design challenge, \ie how to maximize the number of clients concurrently served by each GPU server in its cluster while meeting per-client AR task accuracy SLAs. The above AR offloading inference serving problem differs from generic inference serving or video analytics serving in one fundamental way: due to the use of local tracking which reuses the last server-returned inference result to derive results for the current frame, the offloading frequency and end-to-end latency of each AR client directly affect its AR task accuracy (for all the frames). In this paper, we present ARISE, a framework that optimizes the edge server capacity in serving edge-assisted AR clients. Our design exploits the intricate interplay between per-client offloading schedule and batched inference on the server via proactively coordinating offloading request streams from different AR clients. Our evaluation using a large set of emulated AR clients and a 10-phone testbed shows that \name supports 1.7x--6.9x more clients compared to various baselines while keeping the per-client accuracy within the client-specified accuracy SLAs.more » « less
-
Edge computing is increasingly proposed as a solution for reducing resource consumption of mobile devices running simultaneous localization and mapping (SLAM) algorithms, with most edge-assisted SLAM systems assuming the communication resources between the mobile device and the edge server to be unlimited, or relying on heuristics to choose the information to be transmitted to the edge. This paper presents AdaptSLAM, an edge-assisted visual (V) and visual-inertial (VI) SLAM system that adapts to the available communication and computation resources, based on a theoretically grounded method we developed to select the subset of keyframes (the representative frames) for constructing the best local and global maps in the mobile device and the edge server under resource constraints. We implemented AdaptSLAM to work with the state-of-the-art open-source V-and VI-SLAM ORB-SLAM3 framework, and demonstrated that, under constrained network bandwidth, AdaptSLAM reduces the tracking error by 62% compared to the best baseline method.more » « less
An official website of the United States government

