We present second epoch optical spectra for 30 changing-look (CL) candidates found by searching for Type-1 optical variability in a sample of active galactic nuclei (AGNs) spectroscopically classified as Type 2. We use a random-forest-based light-curve classifier and spectroscopic follow-up, confirming 50 per cent of candidates as turning-on CLs. In order to improve this selection method and to better understand the nature of the not-confirmed CL candidates, we perform a multiwavelength variability analysis including optical, mid-infrared (MIR), and X-ray data, and compare the results from the confirmed and not-confirmed CLs identified in this work. We find that most of the not-confirmed CLs are consistent with weak Type 1s dominated by host-galaxy contributions, showing weaker optical and MIR variability. On the contrary, the confirmed CLs present stronger optical fluctuations and experience a long (from five to ten years) increase in their MIR fluxes and the colour W1–W2 over time. In the 0.2–2.3 keV band, at least four out of 11 CLs with available SRG/eROSITA detections have increased their flux in comparison with archival upper limits. These common features allow us to select the most promising CLs from our list of candidates, leading to nine sources with similar multiwavelength photometric properties to our CL sample. The use of machine learning algorithms with optical and MIR light curves will be very useful to identify CLs in future large-scale surveys.
The scarce optical variability studies in spectrally classified Type 2 active galactic nuclei (AGNs) have led to the discovery of anomalous objects that are incompatible with the simplest unified models (UMs). This paper focuses on the exploration of different variability features that allow to distinguish between obscured, Type 2 AGNs and the variable, unobscured Type 1s. We analyse systematically the Zwicky Transient Facility, 2.5-yr-long light curves of ∼15 000 AGNs from the Sloan Digital Sky Survey Data Release 16, which are generally considered Type 2s due to the absence of strong broad emission lines (BELs). Consistent with the expectations from the UM, the variability features are distributed differently for distinct populations, with spectrally classified weak Type 1s showing one order of magnitude larger variances than the Type 2s. We find that the parameters given by the damped random walk model lead to broader H α equivalent width for objects with τg > 16 d and long-term structure function SF∞, g > 0.07 mag. By limiting the variability features, we find that ∼11 per cent of Type 2 sources show evidence for optical variations. A detailed spectral analysis of the most variable sources (∼1 per cent of the Type 2 sample) leads to the discovery of misclassified Type 1s with weak BELs and changing-state candidates. This work presents one of the largest systematic investigations of Type 2 AGN optical variability to date, in preparation for future large photometric surveys.
more » « less- Award ID(s):
- 2108402
- PAR ID:
- 10381340
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 518
- Issue:
- 1
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 1531-1542
- Size(s):
- p. 1531-1542
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT We analysed the nuclear region of all 56 early-type galaxies from the DIVING3D Project, which is a statistically complete sample of objects that contains all 170 galaxies in the Southern Hemisphere with B < 12.0 mag and galactic latitude |b| < 15°. Observations were performed with the Integral Field Unit of the Gemini Multi-Object Spectrograph. Emission lines were detected in the nucleus of 86 ± 5 per cent of the objects. Diagnostic diagrams were used to classify 52 ± 7 per cent of the objects as LINERs or Seyferts, while the other 34 ± 6 per cent galaxies without H β or [O iii] lines in their spectra were classified as weak emission line objects. Transition Objects are not seen in the sample, possibly because the seeing-limited data cubes of the objects allow one to isolate the nuclei of the galaxies from their circumnuclear regions, avoiding contamination from H ii regions. A broad line region is seen in 29 ± 6 per cent of the galaxies. Of the 48 galaxies with emission-line nuclei, 41 have signs of AGNs. Some objects also have indications of shocks in their nuclei. Lenticular galaxies are more likely to have emission lines than ellipticals. Also, more luminous objects have higher [N ii]/H α ratios, which may be associated with the mass-metalicity relation of galaxies. A direct comparison of our results with the Palomar Survey indicates that the detection rates of emission lines and also of type 1 AGNs are higher in the DIVING3D objects. This is a consequence of using a more modern instrument with a better spatial resolution than the Palomar Survey observations.
-
ABSTRACT Active galactic nuclei (AGNs) make up about 35 per cent of the more than 250 sources detected in very high-energy (VHE) gamma rays to date with the imaging atmospheric Cherenkov telescopes. Apart from four nearby radio galaxies and two AGNs of unknown type, all known VHE AGNs are blazars. Knowledge of the cosmological redshift of gamma-ray blazars is key to enabling the study of their intrinsic emission properties, as the interaction between gamma rays and the extragalactic background light (EBL) results in a spectral softening. Therefore, the redshift determination exercise is crucial to indirectly placing tight constraints on the EBL density, and to studying blazar population evolution across cosmic time. Due to the powerful relativistic jets in blazars, most of their host galaxies’ spectral features are outshined, and dedicated high signal-to-noise (S/N) spectroscopic observations are required. Deep medium- to high-resolution spectroscopy of 33 gamma-ray blazar optical counterparts was performed with the European Southern Observatory, New Technology Telescope, Keck II telescope, Shane 3-metre telescope, and the Southern African Large Telescope. From the sample, spectra from 25 objects display spectral features or are featureless and have high S/N. The other eight objects have low-quality featureless spectra. We systematically searched for absorption and emission features and estimated, when possible, the fractional host galaxy flux in the measured total flux. Our measurements yielded 14 firm spectroscopic redshifts, ranging from 0.0838 to 0.8125, one tentative redshift, and two lower limits: one at $z > 0.382$ and the other at z > 0.629.
-
ABSTRACT This work presents the first results of the Deep IFS View of Nuclei of Galaxies (DIVING3D) survey. We analysed the nuclear emission-line spectra of a sub-sample we call mini-DIVING3D, which includes all Southern galaxies with B < 11.2 and |b| > 15°. We verified that $23{{\ \rm per\ cent}} \pm 4{{\ \rm per\ cent}}$ of the galaxies show nuclear emission-line properties characteristic of Low Ionization Nuclear Emission-Line Regions (LINERs). Diagnostic diagram analysis reveals an apparent dichotomy, not detected in previous studies, between objects classified as H ii regions and as LINERs or Seyferts, with very few galaxies classified as transition objects. A possible explanation for this result is that at least part of the transition objects are composite systems, with a central LINER contaminated by the emission from circumnuclear H ii regions. The higher spatial resolution of the DIVING3D survey, in comparison with previous studies, allowed us to isolate the nuclear emission from circumnuclear contaminations, reducing the number of transition objects. We also propose an alternative scenario, in which the emission-line spectra of some transition objects are the result of shock heating by central outflows, together with photoionization by young stars. Clear evidence of active galactic nuclei, in the optical and X-ray spectral bands, were detected in 69 per cent of the LINERs in the mini-DIVING3D sample. Considering the entire mini-DIVING3D sample, evidence of AGNs were detected in 65 per cent of the objects.
-
ABSTRACT We investigated the gas obscuration and host galaxy properties of active galactic nuclei (AGNs) during the peak of cosmic accretion growth of supermassive black holes at redshift 0.8–1.8 using X-ray-detected AGNs with mid-infrared and far-infrared detection. The sample was classified as type-1 and type-2 AGNs using optical spectral and morphological classification while the host galaxy properties were estimated with multiwavelength spectral energy distribution fitting. For type-1 AGNs, the black hole mass was determined from MgII emission lines while the black hole mass of type-2 AGNs was inferred from the host galaxy’s stellar mass. Based on the derived parameters, the distribution of the sample in the absorption hydrogen column density (NH) versus Eddington ratio diagram is examined. Among the type-2 AGNs, 28 ± 5 per cent are in the forbidden zone, where the obscuration by dust torus cannot be maintained due to radiation pressure on dusty material. The fraction is higher than that observed in the local universe from the Burst Alert Telescope AGN Spectroscopic Survey data release 2 (BASS DR2) (11 ± 3 per cent). The higher fraction implies that the obscuration of the majority of AGNs is consistent with the radiation pressure regulated unified model but with an increased incidence of interstellar matter (ISM)-obscured AGNs. We discuss the possibility of dust-free absorption in type-1 AGNs and heavy ISM absorption in type-2 AGNs. We also find no statistical difference in the star-formation activity between type-1 and type-2 AGNs which may suggest that obscuration triggered by a gas-rich merging is not common among X-ray detected AGNs in this epoch.