skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigation of the fine structure of antihydrogen
At the historic Shelter Island Conference on the Foundations of Quantum Mechanics in 1947, Willis Lamb reported an unexpected feature in the fine structure of atomic hydrogen: a separation of the 2S1/2 and 2P1/2 states1. The observation of this separation, now known as the Lamb shift, marked an important event in the evolution of modern physics, inspiring others to develop the theory of quantum electrodynamics2–5. Quantum electrodynamics also describes antimatter, but it has only recently become possible to synthesize and trap atomic antimatter to probe its structure. Mirroring the historical development of quantum atomic physics in the twentieth century, modern measurements on anti-atoms represent a unique approach for testing quantum electrodynamics and the foundational symmetries of the standard model. Here we report measurements of the fine structure in the n = 2 states of antihydrogen, the antimatter counterpart of the hydrogen atom. Using optical excitation of the 1S–2P Lyman-α transitions in antihydrogen6, we determine their frequencies in a magnetic field of 1 tesla to a precision of 16 parts per billion. Assuming the standard Zeeman and hyperfine interactions, we infer the zero-field fine-structure splitting (2P1/2–2P3/2) in antihydrogen. The resulting value is consistent with the predictions of quantum electrodynamics to a precision of 2 per cent. Using our previously measured value of the 1S–2S transition frequency6,7, we find that the classic Lamb shift in antihydrogen (2S1/2–2P1/2 splitting at zero field) is consistent with theory at a level of 11 per cent. Our observations represent an important step towards precision measurements of the fine structure and the Lamb shift in the antihydrogen spectrum as tests of the charge– parity–time symmetry8 and towards the determination of other fundamental quantities, such as the antiproton charge radius9,10, in this antimatter system.  more » « less
Award ID(s):
1806380 1806305
PAR ID:
10159547
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nature
Volume:
578
Issue:
7795
ISSN:
0028-0836
Page Range / eLocation ID:
375 to 380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The photon—the quantum excitation of the electromagnetic field—is massless but carries momentum. A photon can therefore exert a force on an object upon collision 1 . Slowing the translational motion of atoms and ions by application of such a force 2,3 , known as laser cooling, was first demonstrated 40 years ago 4,5 . It revolutionized atomic physics over the following decades 6–8 , and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to antimatter. Here we demonstrate laser cooling of antihydrogen 9 , the antimatter atom consisting of an antiproton and a positron. By exciting the 1S–2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman-α laser radiation 10,11 , we Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension, the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions. We observe a reduction in the median transverse energy by more than an order of magnitude—with a substantial fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of the laser-driven 1S–2S transition in samples of laser-cooled antihydrogen atoms. The observed spectral line is approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample of antihydrogen will drastically improve spectroscopic 11–13 and gravitational 14 studies of antihydrogen in ongoing experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will potentially provide ground-breaking opportunities for future experiments, such as anti-atomic fountains, anti-atom interferometry and the creation of antimatter molecules. 
    more » « less
  2. Abstract The performance of a caesium fountain frequency reference for use in precision measurements of trapped antihydrogen in the ALPHA experiment at CERN is evaluated. A description of the fountain is provided together with a characterisation of systematic effects. The impact of the magnetic environment in the Antimatter Factory, where the fountain is installed, on the performance of the fountain is considered and shown to be insignificant. The systematic fractional frequency uncertainty of the fountain is 3.0 × 10-16. The short-term frequency stability of the measured frequency from the ALPHA-HM1 maser is 1.5 × 10-13τ-1/2, whereas the fountain itself shows a stability limit of 4.7 × 10-14τ-1/2. We find a fractional frequency difference of (1.0 ± 2.2 (stat.) ± 6.5 (syst.)) × 10-16 in a comparison with Terrestrial Time via a GNSS Common View satellite link between January 2023 and June 2024. The fountain will enables a significant increase in frequency precision in antihydrogen spectroscopic measurements, and paves the way for improved limits on matter-antimatter comparisons. 
    more » « less
  3. Abstract The disproportionation of H2O into solar fuels H2and O2, or water splitting, is a promising strategy for clean energy harvesting and storage but requires the concerted action of absorption of photons, separation of excitons, charge diffusion to catalytic sites and catalysis of redox processes. It is increasingly evident that the rational design of photocatalysts for efficient water splitting must employ hybrid systems, where the different components perform light harvesting, charge separation and catalysis in tandem. In this topical review, we report on the recent development of a new class of hybrid photocatalysts that employs MxV2O5(M = p-block cation) nanowires in order to engineer efficient charge transfer from the photoactive chalcogenide quantum dots (QDs) to the water-splitting and hydrogen evolving catalysts. Herein, we summarize the oxygen-mediated lone pair mechanism used to modulate the energy level and orbital character of mid-gap states in the MxV2O5nanowires. The electronic structure of MxV2O5is discussed in terms of density functional theory and hard x-ray photoelectron spectroscopy (HAXPES) measurements. The principles of HAXPES are explained within the context of its unique sensitivity to metal 5(6)s orbitals and ability to non-destructively study buried interface alignments of quantum dot decorated nanowires i.e., MxV2O5/CdX (X = S, Se, Te). We illustrate with examples how the MxV2O5/CdX band alignments can be rationally engineered for ultra-fast charge-transfer of photogenerated holes from the quantum dot to the nanowires; thereby suppressing anodic photo-corrosion in the CdX QDs and enabling efficacious hydrogen evolution. 
    more » « less
  4. The 1S hyperfine splitting in hydrogen is measured to an impressive ppt precision and will soon be measured to ppm precision in muonic hydrogen. The latter measurement will rely on theoretical predictions, which are limited by knowledge of the proton polarizability effect Δpol. Data-driven evaluations of Δpol have long been in significant tension with baryon chiral perturbation theory. Here we present improved results for Δpol driven by new spin structure data, reducing the long-standing tension between theory and experiment and halving the dominating uncertainty in hyperfine splitting calculations. 
    more » « less
  5. Penning-trap mass spectrometry in atomic and nuclear physics has become a well-established and reliable tool for the determination of atomic masses. In combination with short-lived radioactive nuclides it was first introduced at ISOLTRAP at the Isotope Mass Separator On-Line facility (ISOLDE) at CERN. Penning traps have found new applications in coupling to other production mechanisms, such as in-flight production and separation systems. The applications in atomic and nuclear physics range from nuclear structure studies and related precision tests of theoretical approaches to description of the strong interaction to tests of the electroweak Standard Model, quantum electrodynamics and neutrino physics, and applications in nuclear astrophysics. The success of Penning-trap mass spectrometry is due to its precision and accuracy, even for low ion intensities (i.e., low production yields), as well as its very fast measurement cycle, enabling access to short-lived isotopes. The current reach in relative mass precision goes beyond δ m/ m=10 −8 , the half-life limit is as low as a few milliseconds, and the sensitivity is on the order of one ion per minute in the trap. We provide a comprehensive overview of the techniques and applications of Penning-trap mass spectrometry in nuclear and atomic physics. 
    more » « less