skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying incoherent mixing effects in the coherent two-dimensional photocurrent excitation spectra of semiconductors
We have previously demonstrated that in the context of two-dimensional (2D) coherent electronic spectroscopy measured by phase modulation and phase-sensitive detection, an incoherent nonlinear response due to pairs of photoexcitations produced via linear excitation pathways contributes to the measured signal as an unexpected background [Grégoire et al., J. Chem. Phys. 147, 114201 (2017)]. Here, we simulate the effect of such incoherent population mixing in the photocurrent signal collected from a GaAs solar cell by acting externally on the transimpedance amplifier circuit used for phase-sensitive detection, and we identify an effective strategy to recognize the presence of incoherent population mixing in 2D data. While we find that incoherent mixing is reflected by the crosstalk between the linear amplitudes at the two time-delay variables in the four-pulse excitation sequence, we do not observe any strict phase correlations between the coherent and incoherent contributions, as expected from modeling of a simple system.  more » « less
Award ID(s):
1904293
PAR ID:
10381363
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
20
ISSN:
0021-9606
Page Range / eLocation ID:
204202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As optical two-dimensional coherent spectroscopy (2DCS) is extended to a broader range of applications, it is critical to improve the detection sensitivity of optical 2DCS. We developed a fast phase-cycling scheme in a non-collinear optical 2DCS implementation by using liquid crystal phase retarders to modulate the phases of two excitation pulses. The background in the signal can be eliminated by combining either two or four interferograms measured with a proper phase configuration. The effectiveness of this method was validated in optical 2DCS measurements of an atomic vapor. This fast phase-cycling scheme will enable optical 2DCS in novel emerging applications that require enhanced detection sensitivity. 
    more » « less
  2. We demonstrate efficient filtering of coherent light from a broad spectral background. A Michelson interferometer is used to effectively filter out the coherent emission of mid-infrared lasers from the co-propagating incoherent emission of a broadband thermal source. We show coherent light suppression as high as 16.9 dB without any modification of the broadband incoherent background spectrum. In addition, we demonstrate the ability to measure the spatially dependent (incoherent) thermal emission from a patterned surface, using our filter to remove a coherent signal which would otherwise overload our detection system. The demonstrated filter is rapidly tunable and wavelength-flexible, and has potential for imaging and spectroscopy applications in the presence of an otherwise overpowering coherent signal. 
    more » « less
  3. Phase stability between pulse pairs defining Fourier-transform time delays can limit resolution and complicates development and adoption of multidimensional coherent spectroscopies. We demonstrate a data processing procedure to correct the long-term phase drift of the nonlinear signal during two-dimensional (2D) experiments based on the relative phase between scattered excitation pulses and a global phasing procedure to generate fully absorptive 2D electronic spectra of wafer-scale monolayer MoS2. Our correction results in a ∼30-fold increase in effective long-term signal phase stability, from ∼λ/2 to ∼λ/70 with negligible extra experimental time and no additional optical components. This scatter-based drift correction should be applicable to other interferometric techniques as well, significantly lowering the practical experimental requirements for this class of measurements. 
    more » « less
  4. Abstract Over the last three decades, several experimental initiatives have been launched with the goal of observing radio-frequency signals produced by ultra-high energy neutrinos (UHEN) interacting in solid media. Observed neutrino event signatures comprise impulsive signals with duration of order the inverse of the antenna+system bandwidth (∼10 ns), superimposed upon an incoherent (typically white noise) thermal noise spectrum. Whereas bulk volume scattering (VS) of radio-frequency (RF) signals is well-studied within the radio-glaciological communities, polar ice-based neutrino-detection experiments have thus far neglected VS in their signal projections. As discussed herein, coherent volume scattering (CVS, for which the phase of the incident signal is preserved during scattering) generated by in-ice neutrino interactions may similarly produce short-duration signal-like power, albeit with a slightly extended time structure, and thereby enhance neutrino detection rates, whereas incoherent (randomized phase) volume scattering (IVS) will persist for O(100 ns), appearing similar to thermal white noise and therefore reducing the measured Signal-to-Noise Ratio (SNR) of neutrino signals. Herein, we present the expected voltage profiles resulting from in-ice volume scattering as a function of the molecular scattering cross-section, for both CVS and IVS, and assess their impact on UHEN experiments. VS contributions are currently only weakly constrained by extant data; stronger limits may be obtained with dedicated calibration experiments. 
    more » « less
  5. Wavefront shaping correction makes it possible to image fluorescent particles deep inside scattering tissue. This requires determining a correction mask to be placed in both the excitation and emission paths. Standard approaches select correction masks by optimizing various image metrics, a process that requires capturing a prohibitively large number of images. To reduce the acquisition cost, iterative phase conjugation techniques use the observation that the desired correction mask is an eigenvector of the tissue transmission operator. They then determine this eigenvector via optical implementations of the power iteration method, which require capturing orders of magnitude fewer images. Existing iterative phase conjugation techniques assume a linear model for the transmission of light through tissue, and thus only apply to fully coherent imaging systems. We extend such techniques to the incoherent case. The fact that light emitted from different sources sums incoherently violates the linear model and makes linear transmission operators inapplicable. We show that, surprisingly, the nonlinearity due to incoherent summation results in an order-of-magnitude acceleration in the convergence of the phase conjugation iteration. 
    more » « less