skip to main content


Title: PInKS: Preconditioned Commonsense Inference with Minimal Supervision
Reasoning with preconditions such as “glass can be used for drinking water unless the glass is shattered” remains an open problem for language models. The main challenge lies in the scarcity of preconditions data and the model’s lack of support for such reasoning. We present PInKS , Preconditioned Commonsense Inference with WeaK Supervision, an improved model for reasoning with preconditions through minimum supervision. We show, empirically and theoretically, that PInKS improves the results on benchmarks focused on reasoning with the preconditions of commonsense knowledge (up to 40% Macro-F1 scores). We further investigate PInKS through PAC-Bayesian informativeness analysis, precision measures, and ablation study.  more » « less
Award ID(s):
2105329
NSF-PAR ID:
10381372
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Humans can seamlessly reason with circumstantial preconditions of commonsense knowledge. We understand that a glass is used for drinking water, unless the glass is broken or the water is toxic. Despite state-of-the-art (SOTA) language models’ (LMs) impressive performance on inferring commonsense knowledge, it is unclear whether they understand the circumstantial preconditions. To address this gap, we propose a novel challenge of reasoning with circumstantial preconditions. We collect a dataset, called PaCo, consisting of 12.4 thousand preconditions of commonsense statements expressed in natural language. Based on this dataset, we create three canonical evaluation tasks and use them to examine the capability of existing LMs to understand situational preconditions. Our results reveal a 10-30% gap between machine and human performance on our tasks, which shows that reasoning with preconditions is an open challenge. 
    more » « less
  2. Natural language often describes events in different granularities, such that more coarse-grained (goal) events can often be decomposed into fine-grained sequences of (step) events. A critical but overlooked challenge in understanding an event process lies in the fact that the step events are not equally important to the central goal. In this paper, we seek to fill this gap by studying how well current models can understand the essentiality of different step events towards a goal event. As discussed by cognitive studies, such an ability enables the machine to mimic human’s commonsense reasoning about preconditions and necessary efforts of daily-life tasks. Our work contributes with a high-quality corpus of (goal, step) pairs from a community guideline website WikiHow, where the steps are manually annotated with their essentiality w.r.t. the goal. The high IAA indicates that humans have a consistent understanding of the events. Despite evaluating various statistical and massive pre-trained NLU models, we observe that existing SOTA models all perform drastically behind humans, indicating the need for future investigation of this crucial yet challenging task. 
    more » « less
  3. Commonsense question answering has primarily been tackled through supervised transfer learning, where a language model pre-trained on large amounts of data is used as the starting point. While successful, the approach requires large amounts of labeled question-answer pairs, with increasingly larger amounts of data required as the complexity of scenarios or tasks such as commonsense QA increases. In this paper, we hypothesize that large-scale pre-training of language models encodes the necessary commonsense knowledge to answer common questions in context without labeled data. We propose a novel framework called Iterative Self Distillation for QA (ISD-QA), which extracts the “dark knowledge” encoded during largescale pre-training of language models to provide supervision for commonsense question answering. We show that the approach can be used to train common neural QA models for commonsense question answering by distilling knowledge from language models in an unsupervised manner. With no bells and whistles, we achieve an average of 68% of the performance of fully supervised QA models while requiring no labeled training data. Extensive experiments on three public benchmarks (OpenBookQA, HellaSWAG, and CommonsenseQA) show the effectiveness of the proposed approach. 
    more » « less
  4. As humans, we can modify our assumptions about a scene by imagining alternative objects or concepts in our minds. For example, we can easily anticipate the implications of the sun being overcast by rain clouds (e.g., the street will get wet) and accordingly prepare for that. In this paper, we introduce a new task/dataset called Commonsense Reasoning for Counterfactual Scene Imagination (COSIM) which is designed to evaluate the ability of AI systems to reason about scene change imagination. In this task/dataset, models are given an image and an initial question-response pair about the image. Next, a counterfactual imagined scene change (in textual form) is applied, and the model has to predict the new response to the initial question based on this scene change. We collect 3.5K high-quality and challenging data instances, with each instance consisting of an image, a commonsense question with a response, a description of a counterfactual change, a new response to the question, and three distractor responses. Our dataset contains various complex scene change types (such as object addition/removal/state change, event description, environment change, etc.) that require models to imagine many different scenarios and reason about the changed scenes. We present a baseline model based on a vision-language Transformer (i.e., LXMERT) and ablation studies. Through human evaluation, we demonstrate a large human-model performance gap, suggesting room for promising future work on this challenging counterfactual, scene imagination task. 
    more » « less
  5. We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment"). We propose nine if-then relation types to distinguish causes vs. effects, agents vs. themes, voluntary vs. involuntary events, and actions vs. mental states. By generatively training on the rich inferential knowledge described in ATOMIC, we show that neural models can acquire simple commonsense capabilities and reason about previously unseen events. Experimental results demonstrate that multitask models that incorporate the hierarchical structure of if-then relation types lead to more accurate inference compared to models trained in isolation, as measured by both automatic and human evaluation. 
    more » « less