To improve computer-based recognition from video of isolated signs from American Sign Language (ASL), we propose a new skeleton-based method that involves explicit detection of the start and end frames of signs, trained on the ASLLVD dataset; it uses linguistically relevant parameters based on the skeleton input. Our method employs a bidirectional learning approach within a Graph Convolutional Network (GCN) framework. We apply this method to the WLASL dataset, but with corrections to the gloss labeling to ensure consistency in the labels assigned to different signs; it is important to have a 1-1 correspondence between signs and text-based gloss labels. We achieve a success rate of 77.43% for top-1 and 94.54% for top-5 using this modified WLASL dataset. Our method, which does not require multi-modal data input, outperforms other state-of-the-art approaches on the same modified WLASL dataset, demonstrating the importance of both attention to the start and end frames of signs and the use of bidirectional data streams in the GCNs for isolated sign recognition.
more »
« less
Bidirectional Skeleton-Based Isolated Sign Recognition using Graph Convolution Networks.
To improve computer-based recognition from video of isolated signs from American Sign Language (ASL), we propose a new skeleton-based method that involves explicit detection of the start and end frames of signs, trained on the ASLLVD dataset; it uses linguistically relevant parameters based on the skeleton input. Our method employs a bidirectional learning approach within a Graph Convolutional Network (GCN) framework. We apply this method to the WLASL dataset, but with corrections to the gloss labeling to ensure consistency in the labels assigned to different signs; it is important to have a 1-1 correspondence between signs and text-based gloss labels. We achieve a success rate of 77.43% for top-1 and 94.54% for top-5 using this modified WLASL dataset. Our method, which does not require multi-modal data input, outperforms other state-of-the-art approaches on the same modified WLASL dataset, demonstrating the importance of both attention to the start and end frames of signs and the use of bidirectional data streams in the GCNs for isolated sign recognition.
more »
« less
- Award ID(s):
- 1763523
- PAR ID:
- 10381424
- Date Published:
- Journal Name:
- LREC proceedings
- ISSN:
- 2522-2686
- Page Range / eLocation ID:
- 7328-7338
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Efthimiou, Eleni; Fotinea, Stavroula-Evita; Hanke, Thomas; Hochgesang, Julie A; Mesch, Johanna; Schulder, Marc (Ed.)We propose a multimodal network using skeletons and handshapes as input to recognize individual signs and detect their boundaries in American Sign Language (ASL) videos. Our method integrates a spatio-temporal Graph Convolutional Network (GCN) architecture to estimate human skeleton keypoints; it uses a late-fusion approach for both forward and backward processing of video streams. Our (core) method is designed for the extraction---and analysis of features from---ASL videos, to enhance accuracy and efficiency of recognition of individual signs. A Gating module based on per-channel multi-layer convolutions is employed to evaluate significant frames for recognition of isolated signs. Additionally, an auxiliary multimodal branch network, integrated with a transformer, is designed to estimate the linguistic start and end frames of an isolated sign within a video clip. We evaluated performance of our approach on multiple datasets that include isolated, citation-form signs and signs pre-segmented from continuous signing based on linguistic annotations of start and end points of signs within sentences. We have achieved very promising results when using both types of sign videos combined for training, with overall sign recognition accuracy of 80.8% Top-1 and 95.2% Top-5 for citation-form signs, and 80.4% Top-1 and 93.0% Top-5 for signs pre-segmented from continuous signing.more » « less
-
We present a new approach for isolated sign recognition, which combines a spatial-temporal Graph Convolution Network (GCN) architecture for modeling human skeleton keypoints with late fusion of both the forward and backward video streams, and we explore the use of curriculum learning. We employ a type of curriculum learning that dynamically estimates, during training, the order of difficulty of each input video for sign recognition; this involves learning a new family of data parameters that are dynamically updated during training. The research makes use of a large combined video dataset for American Sign Language (ASL), including data from both the American Sign Language Lexicon Video Dataset (ASLLVD) and the Word-Level American Sign Language (WLASL) dataset, with modified gloss labeling of the latter—to ensure 1-1 correspondence between gloss labels and distinct sign productions, as well as consistency in gloss labeling across the two datasets. This is the first time that these two datasets have been used in combination for isolated sign recognition research. We also compare the sign recognition performance on several different subsets of the combined dataset, varying in, e.g., the minimum number of samples per sign (and therefore also in the total number of sign classes and video examples).more » « less
-
We present a new approach for isolated sign recognition, which combines a spatial-temporal Graph Convolution Network (GCN) architecture for modeling human skeleton keypoints with late fusion of both the forward and backward video streams, and we explore the use of curriculum learning. We employ a type of curriculum learning that dynamically estimates, during training, the order of difficulty of each input video for sign recognition; this involves learning a new family of data parameters that are dynamically updated during training. The research makes use of a large combined video dataset for American Sign Language (ASL), including data from both the American Sign Language Lexicon Video Dataset (ASLLVD) and the Word-Level American Sign Language (WLASL) dataset, with modified gloss labeling of the latter—to ensure 1-1 correspondence between gloss labels and distinct sign productions, as well as consistency in gloss labeling across the two datasets. This is the first time that these two datasets have been used in combination for isolated sign recognition research. We also compare the sign recognition performance on several different subsets of the combined dataset, varying in, e.g., the minimum number of samples per sign (and therefore also in the total number of sign classes and video examples).more » « less
-
The WLASL purports to be “the largest video dataset for Word-Level American Sign Language (ASL) recognition.” It brings together various publicly shared video collections that could be quite valuable for sign recognition research, and it has been used extensively for such research. However, a critical problem with the accompanying annotations has heretofore not been recognized by the authors, nor by those who have exploited these data: There is no 1-1 correspondence between sign productions and gloss labels. Here we describe a large, linguistically annotated, video corpus of citation-form ASL signs shared by the ASLLRP—with 23,452 sign tokens and an online Sign Bank—in which such correspondences are enforced. We furthermore provide annotations for 19,672 of the WLASL video examples consistent with ASLLRP glossing conventions. For those wishing to use WLASL videos, this provides a set of annotations making it possible: (1) to use those data reliably for computational research; and/or (2) to combine the WLASL and ASLLRP datasets, creating a combined resource that is larger and richer than either of those datasets individually, with consistent gloss labeling for all signs. We also offer a summary of our own sign recognition research to date that exploits these data resources.more » « less