skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Recent Advances in Wearable Sensors and Integrated Functional Devices for Virtual and Augmented Reality Applications
Abstract

The advancement in virtual reality/augmented reality (VR/AR) has been achieved by breakthroughs in the realistic perception of virtual elements. Although VR/AR technology is advancing fast, enhanced sensor functions, long‐term wearability, and seamless integration with other electronic components are still required for more natural interactions with the virtual world. Here, this report reviews the recent advances in multifunctional wearable sensors and integrated functional devices for VR/AR applications. Specified device designs, packaging strategies, and interactive physiological sensors are summarized based on their methodological approaches for sensory inputs and virtual feedback. In addition, limitations of the existing systems, key challenges, and future directions are discussed. It is envisioned that this progress report's outcomes will expand the insights on wearable functional sensors and device interfaces toward next‐generation VR/AR technologies.

 
more » « less
Award ID(s):
1707056
PAR ID:
10381446
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
31
Issue:
39
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Since the modern concepts for virtual and augmented reality are first introduced in the 1960's, the field has strived to develop technologies for immersive user experience in a fully or partially virtual environment. Despite the great progress in visual and auditory technologies, haptics has seen much slower technological advances. The challenge is because skin has densely packed mechanoreceptors distributed over a very large area with complex topography; devising an apparatus as targeted as an audio speaker or television for the localized sensory input of an ear canal or iris is more difficult. Furthermore, the soft and sensitive nature of the skin makes it difficult to apply solid state electronic solutions that can address large areas without causing discomfort. The maturing field of soft robotics offers potential solutions toward this challenge. In this article, the definition and history of virtual (VR) and augmented reality (AR) is first reviewed. Then an overview of haptic output and input technologies is presented, opportunities for soft robotics are identified, and mechanisms of intrinsically soft actuators and sensors are introduced. Finally, soft haptic output and input devices are reviewed with categorization by device forms, and examples of soft haptic devices in VR/AR environments are presented.

     
    more » « less
  2. Wearable near-eye displays for virtual and augmented reality (VR/AR) have seen enormous growth in recent years. While researchers are exploiting a plethora of techniques to create life-like three-dimensional (3D) objects, there is a lack of awareness of the role of human perception in guiding the hardware development. An ultimate VR/AR headset must integrate the display, sensors, and processors in a compact enclosure that people can comfortably wear for a long time while allowing a superior immersion experience and user-friendly human–computer interaction. Compared with other 3D displays, the holographic display has unique advantages in providing natural depth cues and correcting eye aberrations. Therefore, it holds great promise to be the enabling technology for next-generation VR/AR devices. In this review, we survey the recent progress in holographic near-eye displays from the human-centric perspective.

     
    more » « less
  3. Augmented reality (AR) is a technology that integrates 3D virtual objects into the physical world in real-time, while virtual reality (VR) is a technology that immerses users in an interactive 3D virtual environment. The fast development of augmented reality (AR) and virtual reality (VR) technologies has reshaped how people interact with the physical world. This presentation will outline the results from two unique AR and one Web-based VR coastal engineering projects, motivating the next stage in the development of the augmented reality package for coastal students, engineers, and planners.

     
    more » « less
  4. In many complex tasks, a remote expert may need to assist a local user or to guide his or her actions in the local user's environment. Existing solutions also allow multiple users to collaborate remotely using high-end Augmented Reality (AR) and Virtual Reality (VR) head-mounted displays (HMD). In this paper, we propose a portable remote collaboration approach, with the integration of AR and VR devices, both running on mobile platforms, to tackle the challenges of existing approaches. The AR mobile platform processes the live video and measures the 3D geometry of the local environment of a local user. The 3D scene is then transited and rendered in the remote side on a mobile VR device, along with a simple and effective user interface, which allows a remote expert to easily manipulate the 3D scene on the VR platform and to guide the local user to complete tasks in the local environment. 
    more » « less
  5. As applications for virtual reality (VR) and augmented reality (AR) technology increase, it will be important to understand how users perceive their action capabilities in virtual environments. Feedback about actions may help to calibrate perception for action opportunities (affordances) so that action judgments in VR and AR mirror actors’ real abilities. Previous work indicates that walking through a virtual doorway while wielding an object can calibrate the perception of one’s passability through feedback from collisions. In the current study, we aimed to replicate this calibration through feedback using a different paradigm in VR while also testing whether this calibration transfers to AR. Participants held a pole at 45°and made passability judgments in AR (pretest phase). Then, they made passability judgments in VR and received feedback on those judgments by walking through a virtual doorway while holding the pole (calibration phase). Participants then returned to AR to make posttest passability judgments. Results indicate that feedback calibrated participants’ judgments in VR. Moreover, this calibration transferred to the AR environment. In other words, after experiencing feedback in VR, passability judgments in VR and in AR became closer to an actor’s actual ability, which could make training applications in these technologies more effective.

     
    more » « less