skip to main content


Title: Integrating AR and VR for Mobile Remote Collaboration
In many complex tasks, a remote expert may need to assist a local user or to guide his or her actions in the local user's environment. Existing solutions also allow multiple users to collaborate remotely using high-end Augmented Reality (AR) and Virtual Reality (VR) head-mounted displays (HMD). In this paper, we propose a portable remote collaboration approach, with the integration of AR and VR devices, both running on mobile platforms, to tackle the challenges of existing approaches. The AR mobile platform processes the live video and measures the 3D geometry of the local environment of a local user. The 3D scene is then transited and rendered in the remote side on a mobile VR device, along with a simple and effective user interface, which allows a remote expert to easily manipulate the 3D scene on the VR platform and to guide the local user to complete tasks in the local environment.  more » « less
Award ID(s):
1827505 1737533
NSF-PAR ID:
10185645
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings - International Symposium on Mixed and Augmented Reality, ISMAR
Page Range / eLocation ID:
104 to 108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Immersive Learning Environments (ILEs) developed in Virtual and Augmented Reality (VR/AR) are a novel pro- fessional training platform. An ILE can facilitate an Adaptive Learning System (ALS), which has proven beneficial to the learning process. However, there is no existing AI-ready ILE that facilitates collecting multimedia multimodal data from the environment and users for training AI models, nor allows for the learning contents and complex learning process to be dynamically adapted by an ALS. This paper proposes a novel multimedia system in VR/AR to dynamically build ILEs for a wide range of use-cases, based on a description language for the generalizable ILE structure. It will detail users’ paths and conditions for completing learning activities, and a content adaptation algorithm to update the ILE at runtime. Human and AI systems can customize the environment based on user learning metrics. Results show that this framework is efficient and low- overhead, suggesting a path to simplifying and democratizing the ILE development without introducing bloat. Index Terms—virtual reality, augmented reality, content generation, immersive learning, 3D environments 
    more » « less
  2. null (Ed.)
    Though virtual reality (VR) has been advanced to certain levels of maturity in recent years, the general public, especially the population of the blind and visually impaired (BVI), still cannot enjoy the benefit provided by VR. Current VR accessibility applications have been developed either on expensive head-mounted displays or with extra accessories and mechanisms, which are either not accessible or inconvenient for BVI individuals. In this paper, we present a mobile VR app that enables BVI users to access a virtual environment on an iPhone in order to build their skills of perception and recognition of the virtual environment and the virtual objects in the environment. The app uses the iPhone on a selfie stick to simulate a long cane in VR, and applies Augmented Reality (AR) techniques to track the iPhone’s real-time poses in an empty space of the real world, which is then synchronized to the long cane in the VR environment. Due to the use of mixed reality (the integration of VR & AR), we call it the Mixed Reality cane (MR Cane), which provides BVI users auditory and vibrotactile feedback whenever the virtual cane comes in contact with objects in VR. Thus, the MR Cane allows BVI individuals to interact with the virtual objects and identify approximate sizes and locations of the objects in the virtual environment. We performed preliminary user studies with blind-folded participants to investigate the effectiveness of the proposed mobile approach and the results indicate that the proposed MR Cane could be effective to help BVI individuals in understanding the interaction with virtual objects and exploring 3D virtual environments. The MR Cane concept can be extended to new applications of navigation, training and entertainment for BVI individuals without more significant efforts. 
    more » « less
  3. In-person human interaction relies on our spatial perception of each other and our surroundings. Current remote communication tools partially address each of these aspects. Video calls convey real user representations but without spatial interactions. Augmented and Virtual Reality (AR/VR) experiences are immersive and spatial but often use virtual environments and characters instead of real-life representations. Bridging these gaps, we introduce DualStream, a system for synchronous mobile AR remote communication that captures, streams, and displays spatial representations of users and their surroundings. DualStream supports transitions between user and environment representations with different levels of visuospatial fidelity, as well as the creation of persistent shared spaces using environment snapshots. We demonstrate how DualStream can enable spatial communication in real-world contexts, and support the creation of blended spaces for collaboration. A formative evaluation of DualStream revealed that users valued the ability to interact spatially and move between representations, and could see DualStream fitting into their own remote communication practices in the near future. Drawing from these findings, we discuss new opportunities for designing more widely accessible spatial communication tools, centered around the mobile phone. 
    more » « less
  4. Over the last two years, we built, evaluated, and published a volumetric communication system for volumetric-based training and assistantship of medical personnel. Technical aspects of the system have been published at HICCS conference. In this paper, we discuss a follow-up work: the design and evaluation of a mixed reality real-time communication system for remote assistance during CPR emergencies. Our system allows an expert to guide a first responder, remotely, on how to give first aid. RGBD cameras capture a volumetric view of the local scene including the patient, the first responder, and the environment. The volumetric capture is augmented onto the remote expert's view to spatially guide the first responder using visual and verbal instructions. We evaluate the mixed reality communication system in a research study in which participants face a simulated emergency. The first responder moves the patient to the recovery position and performs chest compressions as well as mouth-to-mask ventilation. Our study compares mixed reality against videoconferencing-based assistance using CPR performance measures, cognitive workload surveys, and semi-structured interviews. We find that more visual communication including gestures and objects is used by the remote expert when assisting in mixed reality compared to videoconferencing. Moreover, the performance and the workload of the first responder during simulation do not differ significantly between the two technologies. 
    more » « less
  5. We present our work in progress, a real-time mixed reality communication system for remote assistance in medical emergency situations. 3D cameras capture the emergency situation and send volumetric data to a remote expert. The remote expert sees the volumetric scene through mixed reality glasses and guides an operator to the patient. The local operator receives audio and visual guidance augmented onto the mixed reality headset. We compare the mixed reality system against traditional video communication in a user study on a CPR emergency simulation. We evaluate task performance, cognitive load, and user interaction. The results will help to better understand the benefits of using augmented and volumetric information in medical emergency procedures. 
    more » « less