Abstract Statistical anisotropy in the nanohertz-frequency gravitational wave background (GWB) is expected to be detected by pulsar timing arrays (PTAs) in the near future. By developing a frequentist statistical framework that intrinsically restricts the GWB power to be positive, we establish scaling relations for multipole-dependent anisotropy decision thresholds that are a function of the noise properties, timing baselines, and cadences of the pulsars in a PTA. We verify that (i) a larger number of pulsars, and (ii) factors that lead to lower uncertainty on spatial cross-correlation measurements between pulsars, lead to a higher overall GWB signal-to-noise ratio, and lower anisotropy decision thresholds with which to reject the null hypothesis of isotropy. Using conservative simulations of realistic NANOGrav data sets, we predict that an anisotropic GWB with angular power C l =1 > 0.3 C l =0 may be sufficient to produce tension with isotropy at the p = 3 × 10 −3 (∼3 σ ) level in near-future NANOGrav data with a 20 yr baseline. We present ready-to-use scaling relationships that can map these thresholds to any number of pulsars, configuration of pulsar noise properties, or sky coverage. We discuss how PTAs can improve the detection prospects for anisotropy, as well as how our methods can be adapted for more versatile searches.
more »
« less
Quality over quantity: Optimizing pulsar timing array analysis for stochastic and continuous gravitational wave signals
ABSTRACT The search for gravitational waves using Pulsar Timing Arrays (PTAs) is a computationally expensive complex analysis that involves source-specific noise studies. As more pulsars are added to the arrays, this stage of PTA analysis will become increasingly challenging. Therefore, optimizing the number of included pulsars is crucial to reduce the computational burden of data analysis. Here, we present a suite of methods to rank pulsars for use within the scope of PTA analysis. First, we use the maximization of the signal-to-noise ratio as a proxy to select pulsars. With this method, we target the detection of stochastic and continuous gravitational wave signals. Next, we present a ranking that minimizes the coupling between spatial correlation signatures, namely monopolar, dipolar, and Hellings & Downs correlations. Finally, we also explore how to combine these two methods. We test these approaches against mock data using frequentist and Bayesian hypothesis testing. For equal-noise pulsars, we find that an optimal selection leads to an increase in the log-Bayes factor two times steeper than a random selection for the hypothesis test of a gravitational wave background versus a common uncorrelated red noise process. For the same test but for a realistic European PTA (EPTA) data set, a subset of 25 pulsars selected out of 40 can provide a log-likelihood ratio that is 89 % of the total, implying that an optimally selected subset of pulsars can yield results comparable to those obtained from the whole array. We expect these selection methods to play a crucial role in future PTA data combinations.
more »
« less
- PAR ID:
- 10381483
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 518
- Issue:
- 2
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 1802-1817
- Size(s):
- p. 1802-1817
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within 1σ. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we “extended” each PTA’s data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the Hellings–Downs correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA’s Data Release 3, which will involve not just adding in additional pulsars but also including data from all three PTAs where any given pulsar is timed by more than a single PTA.more » « less
-
Abstract Pulsar timing arrays (PTAs) are galactic-scale gravitational wave (GW) detectors. Each individual arm, composed of a millisecond pulsar, a radio telescope, and a kiloparsecs-long path, differs in its properties but, in aggregate, can be used to extract low-frequency GW signals. We present a noise and sensitivity analysis to accompany the NANOGrav 15 yr data release and associated papers, along with an in-depth introduction to PTA noise models. As a first step in our analysis, we characterize each individual pulsar data set with three types of white-noise parameters and two red-noise parameters. These parameters, along with the timing model and, particularly, a piecewise-constant model for the time-variable dispersion measure, determine the sensitivity curve over the low-frequency GW band we are searching. We tabulate information for all of the pulsars in this data release and present some representative sensitivity curves. We then combine the individual pulsar sensitivities using a signal-to-noise ratio statistic to calculate the global sensitivity of the PTA to a stochastic background of GWs, obtaining a minimum noise characteristic strain of 7 × 10−15at 5 nHz. A power-law-integrated analysis shows rough agreement with the amplitudes recovered in NANOGrav’s 15 yr GW background analysis. While our phenomenological noise model does not model all known physical effects explicitly, it provides an accurate characterization of the noise in the data while preserving sensitivity to multiple classes of GW signals.more » « less
-
Abstract Radio pulsar signals are significantly perturbed by their propagation through the ionized interstellar medium. In addition to the frequency-dependent pulse times of arrival due to dispersion, pulse shapes are also distorted and shifted, having been scattered by the inhomogeneous interstellar plasma, affecting pulse arrival times. Understanding the degree to which scattering affects pulsar timing is important for gravitational-wave detection with pulsar timing arrays (PTAs), which depend on the reliability of pulsars as stable clocks with an uncertainty of ∼100 ns or less over ∼10 yr or more. Scattering can be described as a convolution of the intrinsic pulse shape with an impulse response function representing the effects of multipath propagation. In previous studies, the technique of cyclic spectroscopy has been applied to pulsar signals to deconvolve the effects of scattering from the original emitted signals, increasing the overall timing precision. We present an analysis of simulated data to test the quality of deconvolution using cyclic spectroscopy over a range of parameters characterizing interstellar scattering and pulsar signal-to-noise ratio (S/N). We show that cyclic spectroscopy is most effective for high S/N and/or highly scattered pulsars. We conclude that cyclic spectroscopy could play an important role in scattering correction to distant populations of highly scattered pulsars not currently included in PTAs. For future telescopes and for current instruments such as the Green Bank Telescope upgraded with the ultrawide bandwidth receiver, cyclic spectroscopy could potentially double the number of PTA-quality pulsars.more » « less
-
Abstract Recently, many different pulsar timing array (PTA) collaborations have reported strong evidence for a common stochastic process in their data sets. The reported amplitudes are in tension with previously computed upper limits. In this paper, we investigate how using a subset of a set of pulsars biases Bayesian upper limit recovery. We generate 500 simulated PTA data sets, based on the NANOGrav 11 yr data set with an injected stochastic gravitational-wave background (GWB). We then compute the upper limits by sampling the individual pulsar likelihoods, and combine them through a factorized version of the PTA likelihood to obtain upper limits on the GWB amplitude, using different numbers of pulsars. We find that it is possible to recover an upper limit (95% credible interval) below the injected value, and that it is significantly more likely for this to occur when using a subset of pulsars to compute the upper limit. When picking pulsars to induce the maximum possible bias, we find that the 95% Bayesian upper limit recovered is below the injected value in 10.6% of the realizations (53 of 500). Further, we find that if we choose a subset of pulsars in order to obtain a lower upper limit than when using the full set of pulsars, the distribution of the upper limits obtained from these 500 realizations is shifted to lower-amplitude values.more » « less