skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background
Abstract The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within 1σ. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we “extended” each PTA’s data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the Hellings–Downs correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA’s Data Release 3, which will involve not just adding in additional pulsars but also including data from all three PTAs where any given pulsar is timed by more than a single PTA.  more » « less
Award ID(s):
1847938 1909933 2146016 2114721 2020265
PAR ID:
10503243
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
966
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 105
Size(s):
Article No. 105
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pulsar timing arrays (PTAs) are Galactic-scale gravitational wave (GW) detectors consisting of precisely timed pulsars distributed across the sky. Within the decade, PTAs are expected to detect nanohertz GWs emitted by close-separation supermassive black hole binaries (SMBHBs), thereby opening up the low-frequency end of the GW spectrum for science. Individual SMBHBs which power active galactic nuclei are also promising multi-messenger sources; they may be identified via theoretically predicted electromagnetic (EM) signatures and be followed up by PTAs for GW observations. In this work, we study the detection and parameter estimation prospects of a PTA which targets EM-selected SMBHBs. Adopting a simulated Galactic millisecond pulsar population, we envisage three different pulsar timing campaigns which observe three mock sources at different sky locations. We find that an all-sky PTA which times the best pulsars is an optimal and feasible approach to observe EM-selected SMBHBs and measure their source parameters to high precision (i.e., comparable to or better than conventional EM measurements). We discuss the implications of our findings in the context of future PTA experiments with the planned Deep Synoptic Array-2000 and the multi-messenger studies of SMBHBs such as the well-known binary candidate OJ 287. 
    more » « less
  2. Abstract Statistical anisotropy in the nanohertz-frequency gravitational wave background (GWB) is expected to be detected by pulsar timing arrays (PTAs) in the near future. By developing a frequentist statistical framework that intrinsically restricts the GWB power to be positive, we establish scaling relations for multipole-dependent anisotropy decision thresholds that are a function of the noise properties, timing baselines, and cadences of the pulsars in a PTA. We verify that (i) a larger number of pulsars, and (ii) factors that lead to lower uncertainty on spatial cross-correlation measurements between pulsars, lead to a higher overall GWB signal-to-noise ratio, and lower anisotropy decision thresholds with which to reject the null hypothesis of isotropy. Using conservative simulations of realistic NANOGrav data sets, we predict that an anisotropic GWB with angular power C l =1 > 0.3 C l =0 may be sufficient to produce tension with isotropy at the p = 3 × 10 −3 (∼3 σ ) level in near-future NANOGrav data with a 20 yr baseline. We present ready-to-use scaling relationships that can map these thresholds to any number of pulsars, configuration of pulsar noise properties, or sky coverage. We discuss how PTAs can improve the detection prospects for anisotropy, as well as how our methods can be adapted for more versatile searches. 
    more » « less
  3. Abstract Pulsar timing arrays (PTAs) are sensitive to low-frequency gravitational waves (GWs), which induce correlated changes in millisecond pulsars’ timing residuals. PTA collaborations around the world have recently announced evidence of a nanohertz gravitational wave background (GWB), which may be produced by a population of supermassive black hole binaries (SMBHBs). The GWB is often modeled as following a power-law power spectral density (PSD); however, a GWB produced by a cosmological population of SMBHBs is expected to have a more complex power spectrum due to the discrete nature of the sources. In this paper, we investigate using at-process PSD to model the GWB, which allows us to fit for both the underlying power-law amplitude and spectral index as well as deviations from that power law, which may be produced by individual nearby binaries. We create simulated data sets based on the properties of the NANOGrav 15 yr data set, and we demonstrate that thet-process PSD can accurately recover the PSD when deviations from a power law are present. With longer timed data sets and more pulsars, we expect the sensitivity of our PTAs to improve, which will allow us to precisely measure the PSD of the GWB and study the sources producing it. 
    more » « less
  4. Abstract Recently, many different pulsar timing array (PTA) collaborations have reported strong evidence for a common stochastic process in their data sets. The reported amplitudes are in tension with previously computed upper limits. In this paper, we investigate how using a subset of a set of pulsars biases Bayesian upper limit recovery. We generate 500 simulated PTA data sets, based on the NANOGrav 11 yr data set with an injected stochastic gravitational-wave background (GWB). We then compute the upper limits by sampling the individual pulsar likelihoods, and combine them through a factorized version of the PTA likelihood to obtain upper limits on the GWB amplitude, using different numbers of pulsars. We find that it is possible to recover an upper limit (95% credible interval) below the injected value, and that it is significantly more likely for this to occur when using a subset of pulsars to compute the upper limit. When picking pulsars to induce the maximum possible bias, we find that the 95% Bayesian upper limit recovered is below the injected value in 10.6% of the realizations (53 of 500). Further, we find that if we choose a subset of pulsars in order to obtain a lower upper limit than when using the full set of pulsars, the distribution of the upper limits obtained from these 500 realizations is shifted to lower-amplitude values. 
    more » « less
  5. Abstract Pulsar distances are notoriously difficult to measure, and play an important role in many fundamental physics experiments, such as pulsar timing arrays. Here, we perform a cross-match between International PTA pulsars (IPTA) and Gaia's Data Release 2 (DR2) and Data Release 3 (DR3). We then combine the IPTA pulsar’s parallax with its binary companion’s parallax, found in Gaia, to improve the distance measurement to the binary. We find seven cross-matched IPTA pulsars in Gaia DR2, and when using Gaia DR3 we find six IPTA pulsar cross-matches but with seven Gaia objects. Moving from Gaia DR2 to Gaia DR3, we find that the Gaia parallaxes for the successfully cross-matched pulsars improved by 53%, and pulsar distances improved by 29%. Finally, we find that binary companions with a <3.0σdetection are unreliable associations, setting a high bar for successful cross-matches. 
    more » « less