skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Soundscapes as heard by invertebrates and fishes: Particle motion measurements on coral reefs
Coral reef soundscapes are increasingly studied for their ecological uses by invertebrates and fishes, for monitoring habitat quality, and to investigate effects of anthropogenic noise pollution. Few examinations of aquatic soundscapes have reported particle motion levels and variability, despite their relevance to invertebrates and fishes. In this study, ambient particle acceleration was quantified from orthogonal hydrophone arrays over several months at four coral reef sites, which varied in benthic habitat and fish communities. Time-averaged particle acceleration magnitudes were similar across axes, within 3 dB. Temporal trends of particle acceleration corresponded with those of sound pressure, and the strength of diel trends in both metrics significantly correlated with percent coral cover. Higher magnitude particle accelerations diverged further from pressure values, potentially representing sounds recorded in the near field. Particle acceleration levels were also reported for boat and example fish sounds. Comparisons with particle acceleration derived audiograms suggest the greatest capacity of invertebrates and fishes to detect soundscape components below 100 Hz, and poorer detectability of soundscapes by invertebrates compared to fishes. Based on these results, research foci are discussed for which reporting of particle motion is essential, versus those for which sound pressure may suffice.  more » « less
Award ID(s):
1736530
PAR ID:
10381494
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
152
Issue:
1
ISSN:
0001-4966
Page Range / eLocation ID:
399 to 415
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Acoustic enrichment can facilitate coral and fish larval settlement, offering a promising method to rebuild degraded reefs. Yet it is critical to understand sound propagation in complex shallow-water coral reefs to effectively apply this method over large restoration-scale areas. In this field-based study, we quantified propagation features of multiple sound types emitted through a custom playback system over varying coral reef habitat. Sound levels were computed at different distances from the source in both pressure and particle motion, the latter being detected by marine invertebrates. Detection distances were primarily determined by source levels, and depth-dependent transmission losses. Transmission losses and detection distances were similar for sound pressure and particle acceleration measurements. Importantly, broadband particle acceleration levels could be closely estimated at distances >10 m using a single hydrophone and a plane wave approximation. Using empirically determined coral larvae sound detection thresholds, we found that low frequency sounds (<1 kHz) such as fish calls from healthy coral reef soundscapes may be detectable by larvae hundreds of meters away. These results provide key data to help design standardized methods and protocols for scientists, managers and restoration practitioners aiming to rebuild coral reef ecosystems over reasonably large spatial scales using acoustic enrichment. 
    more » « less
  2. The_Royal_Society_Publishing (Ed.)
    Coral reefs, hubs of global biodiversity, are among the world’s most imperilled habitats. Healthy coral reefs are characterized by distinctive soundscapes; these environments are rich with sounds produced by fishes and marine invertebrates. Emerging evidence suggests these sounds can be used as orientation and settlement cues for larvae of reef animals. On degraded reefs, these cues may be reduced or absent, impeding the success of larval settlement, which is an essential process for the maintenance and replenishment of reef populations. Here, in a field-based study, we evaluated the effects of enriching the soundscape of a degraded coral reef to increase coral settlement rates.Porites astreoideslarvae were exposed to reef sounds using a custom solar-powered acoustic playback system.Porites astreoidessettled at significantly higher rates at the acoustically enriched sites, averaging 1.7 times (up to maximum of seven times) more settlement compared with control reef sites without acoustic enrichment. Settlement rates decreased with distance from the speaker but remained higher than control levels at least 30 m from the sound source. These results reveal that acoustic enrichment can facilitate coral larval settlement at reasonable distances, offering a promising new method for scientists, managers and restoration practitioners to rebuild coral reefs. 
    more » « less
  3. Coral reefs comprise some of the most biodiverse habitats on the planet. These ecosystems face a range of stressors, making quantifying community assemblages and potential changes vital to effective management. To understand short- and long-term changes in biodiversity and detect early warning signals of decline, new methods for quantifying biodiversity at scale are necessary. Acoustic monitoring techniques have proven useful in observing species activities and biodiversity on coral reefs through aggregate approaches (i.e. energy as a proxy). However, few studies have ground-truthed these acoustic analyses with human-based observations. In this study, we sought to expand these passive acoustic methods by investigating biological sounds and fish call rates on a healthy reef, providing a unique set of human-confirmed, labeled acoustic observations. We analyzed acoustic data from Tektite Reef, St. John, US Virgin Islands, over a 2 mo period. A subset of acoustic files was manually inspected to identify recurring biotic sounds and quantify reef activity throughout the day. We found a high variety of acoustic signals in this soundscape. General patterns of call rates across time conformed to expectations, with dusk and dawn showing important and significantly elevated peaks in soniferous fish activity. The data reflected high variability in call rates across days and lunar phases. Call rates did not correspond to sound pressure levels, suggesting that certain call types may drive crepuscular trends in sound levels while lower-level critical calls, likely key for estimating biodiversity and behavior, may be missed by gross sound level analyses. 
    more » « less
  4. Coral reefs are biodiverse marine ecosystems that are undergoing rapid changes, making monitoring vital as we seek to manage and mitigate stressors. Healthy reef soundscapes are rich with sounds, enabling passive acoustic recording and soundscape analyses to emerge as cost-effective, long-term methods for monitoring reef communities. Yet most biological reef sounds have not been identified or described, limiting the effectiveness of acoustic monitoring for diversity assessments. Machine learning offers a solution to scale such analyses but has yet to be successfully applied to characterize the diversity of reef fish sounds. Here we sought to characterize and categorize coral reef fish sounds using unsupervised machine learning methods. Pulsed fish and invertebrate sounds from 480 min of data sampled across 10 days over a 2-month period on a US Virgin Islands reef were manually identified and extracted, then grouped into acoustically similar clusters using unsupervised clustering based on acoustic features. The defining characteristics of these clusters were described and compared to determine the extent of acoustic diversity detected on these reefs. Approximately 55 distinct calls were identified, ranging in centroid frequency from 50 Hz to 1,300 Hz. Within this range, two main sub-bands containing multiple signal types were identified from 100 Hz to 400 Hz and 300 Hz–700 Hz, with a variety of signals outside these two main bands. These methods may be used to seek out acoustic diversity across additional marine habitats. The signals described here, though taken from a limited dataset, speak to the diversity of sounds produced on coral reefs and suggest that there might be more acoustic niche differentiation within soniferous fish communities than has been previously recognized. 
    more » « less
  5. Cross-ecosystem nutrient transfer can enhance coral reef functioning in an otherwise oligotrophic environment. While the influence of seabird-derived nutrients on coral reef organisms is increasingly recognized, how they are integrated into reef food webs remains unclear. Cryptobenthic reef fishes are crucial for energy transfer on coral reefs, and their fast life histories imply that they respond strongly to seabird-derived nutrients. Here, we investigate how variation in nearshore seabird nutrient subsidies affects coral reef fish communities. By comparing fish communities across locations differing in seabird nutrient inputs and using stable isotope analysis, we explore nutrient integration across depth, their influence on cryptobenthic and associated larger reef fishes and investigated the relative reliance of cryptobenthic fishes on seabird-enriched benthic and non-enriched pelagic pathways. We find that, near seabird colonies, cryptobenthic fishes’ diets can transition from pelagic to benthic dominance; cryptobenthic fish communities are larger; herbivores and all feeding groups comprising potential cryptobenthic fish predators have higher biomass. Collectively, our results stress the importance of seabirds in shaping energy pathways and suggest that, even in dynamic, ocean-swept reef systems, cryptobenthic fishes can mobilize seabird subsidies and potentially act as a nutritional bridge to higher trophic levels. 
    more » « less