Label Propagation Algorithm (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification, but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relationship between LPA and GCN has not yet been systematically investigated. Moreover, it is unclear how LPA and GCN can be combined under a unified framework to improve the performance. Here we study the relationship between LPA and GCN in terms of feature/label influence , in which we characterize how much the initial feature/label of one node influences the final feature/label of another node in GCN/LPA. Based on our theoretical analysis, we propose an end-to-end model that combines GCN and LPA. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved performance. Our model can also be seen as learning the weights of edges based on node labels, which is more direct and efficient than existing feature-based attention models or topology-based diffusion models. In a number of experiments for semi-supervised node classification and knowledge-graph-aware recommendation, our model shows superiority over state-of-the-art baselines. 
                        more » 
                        « less   
                    
                            
                            Direction-Optimizing Label Propagation Framework for Structure Detection in Graphs: Design, Implementation, and Experimental Analysis
                        
                    
    
            Label Propagation is not only a well-known machine learning algorithm for classification, but it is also an effective method for discovering communities and connected components in networks. We propose a new Direction-Optimizing Label Propagation Algorithm (DOLPA) framework that enhances the performance of the standard Label Propagation Algorithm (LPA), increases its scalability, and extends its versatility and application scope. As a central feature, the DOLPA framework relies on the use of frontiers and alternates between label push and label pull operations to attain high performance. It is formulated in such a way that the same basic algorithm can be used for finding communities or connected components in graphs by only changing the objective function used. Additionally, DOLPA has parameters for tuning the processing order of vertices in a graph to reduce the number of edges visited and improve the quality of solution obtained. We present the design and implementation of the enhanced algorithm as well as our shared-memory parallelization of it using OpenMP. We also present an extensive experimental evaluation of our implementations using the LFR benchmark and real-world networks drawn from various domains. Compared with an implementation of LPA for community detection available in a widely used network analysis software, we achieve at most five times the F-Score while maintaining similar runtime for graphs with overlapping communities. We also compare DOLPA against an implementation of the Louvain method for community detection using the same LFR-graphs and show that DOLPA achieves about three times the F-Score at just 10% of the runtime. For connected component decomposition, our algorithm achieves orders of magnitude speedups over the basic LP-based algorithm on large diameter graphs, up to 13.2 × speedup over the Shiloach-Vishkin algorithm, and up to 1.6 × speedup over Afforest on an Intel Xeon processor using 40 threads. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1716828
- PAR ID:
- 10381500
- Date Published:
- Journal Name:
- ACM Journal of Experimental Algorithmics
- ISSN:
- 1084-6654
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)By modelling how the probability distributions of individuals’ states evolve as new information flows through a network, belief propagation has broad applicability ranging from image correction to virus propagation to even social networks. Yet, its scant implementations confine themselves largely to the realm of small Bayesian networks. Applications of the algorithm to graphs of large scale are thus unfortunately out of reach. To promote its broad acceptance, we enable belief propagation for both small and large scale graphs utilizing GPU processing. We therefore explore a host of optimizations including a new simple yet extensible input format enabling belief propagation to operate at massive scale, along with significant workload processing updates and meticulous memory management to enable our implementation to outperform prior works in terms of raw execution time and input size on a single machine. Utilizing a suite of parallelization technologies and techniques against a diverse set of graphs, we demonstrate that our implementations can efficiently process even massive networks, achieving up to nearly 121x speedups versus our control yet optimized single threaded implementations while supporting graphs of over ten million nodes in size in contrast to previous works’ support for thousands of nodes using CPU-based multi-core and host solutions. To assist in choosing the optimal implementation for a given graph, we provide a promising method utilizing a random forest classifier and graph metadata with a nearly 95% F1-score from our initial benchmarking and is portable to different GPU architectures to achieve over an F1-score of over 72% accuracy and a speedup of nearly 183x versus our control running in this new environment.more » « less
- 
            Community detection in graphs, also known as graph partitioning, is a well-studied NP-hard problem. Various heuristic approaches have been adopted to tackle this problem in polynomial time. One such approach, as outlined in the IEEE HPEC Graph Challenge, is Bayesian statistics-based stochastic block partitioning. This method delivers high-quality partitions in sub-quadratic runtime, but it fails to scale to very large graphs. In this paper, we present sampling as an avenue for speeding up the algorithm on large graphs. We first show that existing sampling techniques can preserve a graph’s community structure. We then show that sampling for stochastic block partitioning can be used to produce a speedup of between 2.18× and 7.26× for graph sizes between 5, 000 and 50, 000 vertices without a significant loss in the accuracy of community detection.more » « less
- 
            In many real-world applications such as social network analysis and online marketing/advertising, community detection is a fundamental task to identify communities (subgraphs) in social networks with high structural cohesiveness. While previous works focus on detecting communities alone, they do not consider the collective influences of users in these communities on other user nodes in social networks. Inspired by this, in this paper, we investigate the influence propagation from some seed communities and their influential effects that result in the influenced communities. We propose a novel problem, named Top-L most Influential Community DEtection (TopL-ICDE) over social networks, which aims to retrieve top-L seed communities with the highest influences, having high structural cohesiveness, and containing user-specified query keywords. To efficiently tackle the TopL-ICDE problem, we design effective pruning strategies to filter out false alarms of seed communities and propose an effective index mechanism to facilitate efficient Top-L community retrieval. We develop an efficient TopL-ICDE answering algorithm by traversing the index and applying our proposed pruning strategies. We also formulate and tackle a variant of TopL-ICDE, named diversified top-L most influential community detection (DTopL-ICDE), which returns a set of L diversified communities with the highest diversity score (i.e., collaborative influences by L communities). We prove that DTopL-ICDE is NP-hard, and propose an efficient greedy algorithm with our designed diversity score pruning. Through extensive experiments, we verify the efficiency and effectiveness of our proposed TopL-ICDE and DTopL-ICDE approaches over real/synthetic social networks under various parameter settings.more » « less
- 
            We summarize the tasks, protocol, and outcome for the 6th Competition on Recognition of Handwritten Mathemat- ical Expressions (CROHME), which includes a new formula detection in document images task (+ TFD). For CROHME + TFD 2019, participants chose between two tasks for recog- nizing handwritten formulas from 1) online stroke data, or 2) images generated from the handwritten strokes. To compare LATEX strings and the labeled directed trees over strokes (label graphs) used in previous CROHMEs, we convert LATEX and stroke-based label graphs to label graphs defined over symbols (symbol-level label graphs, or symLG). More than thirty (33) participants registered for the competition, with nineteen (19) teams submitting results. The strongest formula recognition results were produced by the USTC-iFLYTEK research team, for both stroke-based (81%) and image-based (77%) input. For the new typeset formula detection task, the Samsung R&D Institute Ukraine (Team 2) obtained a very strong F-score (93%). System performance has improved since the last CROHME - still, the competition results suggest that recognition of handwritten formulae remains a difficult structural pattern recognition task.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    