Abstract We explore the response of northeastern Pacific sea surface temperature (SST) to deglacial (16–7 ka) climate variability as recorded in‐based SST reconstructions spanning 65°N to 10°S. Included in the analysis is a new 23 kyr SST record from core NH8P from the northwest Mexican Margin. We isolate spatiotemporal patterns in regional SSTs with trend empirical orthogonal function (TEOF) analysis. The dominant TEOF mode reflects deglacial warming associated with rising. Tropical and subtropical SSTs correlated most strongly with this mode, suggesting that the thermodynamic response of the tropical eastern Pacific to greenhouse gas forcing was the dominant driver of regional SST change during deglaciation. The second TEOF mode reflects millennial‐scale variability and is most strongly expressed in subpolar SSTs. The synchronous timing between North Pacific and North Atlantic SST oscillations is evidence for the rapid transmission of millennial‐scale climate perturbations between the basins, likely through an atmospheric teleconnection. SSTs at NH8P have no correlation with either leading TEOF mode as there is minimal change in SST at this site after20 ka. A model simulation of the LGM indicates that glacial cooling was muted in much of the Eastern Pacific Warm Pool (EPWP), in which NH8P lies, due to reductions in latent heat flux. This suggests that the wind‐evaporation‐SST feedback was responsible for the attenuation of EPWP cooling. Overall, this study highlights the distinct latitudinal trends in the Pacific's response to deglaciation.
more »
« less
Proxy‐Based Preformed Phosphate Estimates Point to Increased Biological Pump Efficiency as Primary Cause of Last Glacial Maximum CO 2 Drawdown
Abstract Upwelling deep waters in the Southern Ocean release biologically sequestered carbon into the atmosphere, contributing to the relatively high atmospheric CO2levels during interglacial climate periods. Paleoceanographic evidence suggests this “CO2leak” was lessened during the last glacial maximum (LGM), potentially due to increased stratification, weaker and equatorward‐shifted winds, and/or enhanced biological carbon export. The collective influences of these mechanisms on the ocean's biological pump efficiency and amount of atmospheric CO2can be quantified by determining preformed phosphate of deep waters. We quantify preformed PO4(Ppre,AOU) and preformed() of LGM bottom waters using a compilation of published paleo‐temperature, nutrient and oxygen estimates from benthic foraminifera. Our results show that preformed phosphate of the Pacific and Indian deep oceans was reduced by about −0.53 ± 0.13 μM and suggest that much (64 ± 28 ppmv) of the Glacial‐Interglacial CO2drawdown resulted from changes in the ocean's biological pump efficiency. Once carbonate compensation is accounted for, this can explain the entire CO2drawdown (87 ± 40 ppmv). Preformedshows similar results. The reconstructed LGM Ppre,AOUand oxygen are qualitatively consistent with the changes produced by a suite of numerical sensitivity experiments that roughly simulate three proposed mechanisms for an increase in LGM biological pump efficiency: an increase in biological activity, a decrease in wind‐driven upwelling, and an increase in stratification in the Southern Ocean.
more »
« less
- Award ID(s):
- 1851900
- PAR ID:
- 10381539
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Paleoceanography and Paleoclimatology
- Volume:
- 37
- Issue:
- 11
- ISSN:
- 2572-4517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper, we are interested in the following question: given an arbitrary Steiner triple systemonvertices and any 3‐uniform hypertreeonvertices, is it necessary thatcontainsas a subgraph provided? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive.more » « less
-
Abstract Cadmium (Cd) is a trace metal whose distribution in the ocean bears a remarkable resemblance to the nutrient phosphate (PO43−). This resemblance has led to the use of Cd as a proxy for ocean nutrient cycling in paleoceanographic applications, but the processes governing the cycling of Cd in the modern ocean remain unclear. In this study, we use previously published Cd observations and an Artificial Neural Network to produce a dissolved Cd climatology that reproduces the observed subtle deviations between the Cd anddistributions. We use the Cd andclimatologies, along with an ocean circulation inverse model, to diagnose the biogeochemical sources and sinks of dissolved Cd and. Our calculations reveal that dissolved Cd, like, is removed in the surface ocean and has a source in the subsurface, consistent with the simultaneous incorporation of Cd andinto sinking organic particles. However, there are also contrasts between the cycling of dissolved Cd andIn particular, thesurface export ratio varies 8‐fold across latitudes, reaching highest values in the iron‐limited sub‐Antarctic Southern Ocean. This depletes Cd relative toin the low‐latitude thermocline while adding excess Cd to deep waters by the regeneration of Cd‐enriched particles. Also, Cd tends to regenerate slightly deeper thanin the subsurface ocean, and theregeneration ratio reaches a maximum at 700–1,500 m. These contrasts are responsible for a slight concavity in therelationship and should be considered when interpreting paleoceanographic Cd records.more » « less
-
Abstract Raman scattering is performed on Fe3GeTe2(FGT) at temperatures from 8 to 300 K and under pressures from the ambient pressure to 9.43 GPa. Temperature‐dependent and pressure‐dependent Raman spectra are reported. The results reveal respective anomalous softening and moderate stiffening of the two Raman active modes as a result of the increase of pressure. The anomalous softening suggests anharmonic phonon dynamics and strong spin–phonon coupling. Pressure‐dependent density functional theory and phonon calculations are conducted and used to study the magnetic properties of FGT and assign the observed Raman modes,and. The calculations proved the strong spin–phonon coupling for themode. In addition, a synergistic interplay of pressure‐induced reduction of spin exchange interactions and spin–orbit coupling effect accounts for the softening of themode as pressure increases.more » « less
-
Abstract In this study, we report on turbulent mixing observed during the annual stratification cycle in the hypolimnetic waters of Lake Michigan (USA), highlighting stratified, convective, and transitional mixing periods. Measurements were collected using a combination of moored instruments and microstructure profiles. Observations during the stratified summer showed a shallow, wind‐driven surface mixed layer (SML) with locally elevated dissipation rates in the thermocline () potentially associated with internal wave shear. Below the thermocline, turbulence was weak () and buoyancy‐suppressed (< 8.5), with low hypolimnetic mixing rates () limiting benthic particle delivery. During the convective winter period, a diurnal cycle of radiative convection was observed over each day of measurement, where temperature overturns were directly correlated with elevated turbulence levels throughout the water column (;). A transitional mixing period was observed for spring conditions when surface temperatures were near the temperature of maximum density (TMD3.98) and the water column began to stably stratify. While small temperature gradients allowed strong mixing over the transitional period (), hypolimnetic velocity shear was overwhelmed by weakly stable stratification (;), limiting the development of the SML. These results highlight the importance of radiative convection for breaking down weak hypolimnetic stratification and driving energetic, full water column mixing during a substantial portion of the year (>100 days at our sample site). Ongoing surface water warming in the Laurentian Great Lakes is significantly reducing the annual impact of convective mixing, with important consequences for nutrient cycling, primary production, and benthic‐pelagic coupling.more » « less
An official website of the United States government
