skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Joint connectivity matrix independent component analysis: Auto‐linking of structural and functional connectivities
Abstract The study of human brain connectivity, including structural connectivity (SC) and functional connectivity (FC), provides insights into the neurophysiological mechanism of brain function and its relationship to human behavior and cognition. Both types of connectivity measurements provide crucial yet complementary information. However, integrating these two modalities into a single framework remains a challenge, because of the differences in their quantitative interdependencies as well as their anatomical representations due to distinctive imaging mechanisms. In this study, we introduced a new method, joint connectivity matrix independent component analysis (cmICA), which provides a data‐driven parcellation and automated‐linking of SC and FC information simultaneously using a joint analysis of functional magnetic resonance imaging (MRI) and diffusion‐weighted MRI data. We showed that these two connectivity modalities produce common cortical segregation, though with various degrees of (dis)similarity. Moreover, we show conjoint FC networks and structural white matter tracts that directly link these cortical parcellations/sources, within one analysis. Overall, data‐driven joint cmICA provides a new approach for integrating or fusing structural connectivity and FC systematically and conveniently, and provides an effective tool for connectivity‐based multimodal data fusion in brain.  more » « less
Award ID(s):
2112455
PAR ID:
10381647
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Human Brain Mapping
Volume:
44
Issue:
4
ISSN:
1065-9471
Page Range / eLocation ID:
p. 1533-1547
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract White matter structural connections are likely to support flow of functional activation or functional connectivity. While the relationship between structural and functional connectivity profiles, here called SC-FC coupling, has been studied on a whole-brain, global level, few studies have investigated this relationship at a regional scale. Here we quantify regional SC-FC coupling in healthy young adults using diffusion-weighted MRI and resting-state functional MRI data from the Human Connectome Project and study how SC-FC coupling may be heritable and varies between individuals. We show that regional SC-FC coupling strength varies widely across brain regions, but was strongest in highly structurally connected visual and subcortical areas. We also show interindividual regional differences based on age, sex and composite cognitive scores, and that SC-FC coupling was highly heritable within certain networks. These results suggest regional structure-function coupling is an idiosyncratic feature of brain organisation that may be influenced by genetic factors. 
    more » « less
  2. Abstract There are a growing number of neuroimaging studies motivating joint structural and functional brain connectivity. Brain connectivity of different modalities provides insight into brain functional organization by leveraging complementary information, especially for brain disorders such as schizophrenia. In this paper, we propose a multi-modal independent component analysis (ICA) model that utilizes information from both structural and functional brain connectivity guided by spatial maps to estimate intrinsic connectivity networks (ICNs). Structural connectivity is estimated through whole-brain tractography on diffusion-weighted MRI (dMRI), while functional connectivity is derived from resting-state functional MRI (rs-fMRI). The proposed structural-functional connectivity and spatially constrained ICA (sfCICA) model estimates ICNs at the subject level using a multi-objective optimization framework. We evaluated our model using synthetic and real datasets (including dMRI and rs-fMRI from 149 schizophrenia patients and 162 controls). Multi-modal ICNs revealed enhanced functional coupling between ICNs with higher structural connectivity, improved modularity, and network distinction, particularly in schizophrenia. Statistical analysis of group differences showed more significant differences in the proposed model compared to the unimodal model. In summary, the sfCICA model showed benefits from being jointly informed by structural and functional connectivity. These findings suggest advantages in simultaneously learning effectively and enhancing connectivity estimates using structural connectivity. 
    more » « less
  3. In this paper, the relationship between functional and structural brain networks is investigated by training a graph encoder-decoder system to learn the mapping from brain structural connectivity (SC) to functional connectivity (FC). Our work leverages a graph convolutional network (GCN) model in the encoder which integrates both nodal attributes and the network topology information to generate new graph representations in lower dimensions. Using brain SC graphs as inputs, the novel GCN-based encoder-decoder system manages to account for both direct and indirect interactions between brain regions to reconstruct the empirical FC networks. In doing so, the latent variables within the system (i.e., the learnt low-dimensional embeddings) capture important information regarding the relation between functional and structural networks. By decomposing the reconstructed functional networks in terms of the output of each graph convolution filter, we can extract those brain regions which contribute most to the generation of FC networks from their SC counterparts. Experiments on a large population of healthy subjects from the Human Connectome Project show our model can learn a generalizable and interpretable SC-FC relationship. Overall, results here support the promising prospect of using GCNs to discover more about the complex nature of human brain activity and function. 
    more » « less
  4. Brain signals can be measured using multiple imaging modalities, such as magnetic resonance imaging (MRI)-based techniques. Different modalities convey distinct yet complementary information; thus, their joint analyses can provide valuable insight into how the brain functions in both healthy and diseased conditions. Data-driven approaches have proven most useful for multimodal fusion as they minimize assumptions imposed on the data, and there are a number of methods that have been developed to uncover relationships across modalities. However, none of these methods, to the best of our knowledge, can discover “one-to-many associations”, meaning one component from one modality is linked with more than one component from another modality. However, such “one-to-many associations” are likely to exist, since the same brain region can be involved in multiple neurological processes. Additionally, most existing data fusion methods require the signal subspace order to be identical for all modalities—a severe restriction for real-world data of different modalities. Here, we propose a new fusion technique—the consecutive independence and correlation transform (C-ICT) model—which successively performs independent component analysis and independent vector analysis and is uniquely flexible in terms of the number of datasets, signal subspace order, and the opportunity to find “one-to-many associations”. We apply C-ICT to fuse diffusion MRI, structural MRI, and functional MRI datasets collected from healthy controls (HCs) and patients with schizophrenia (SZs). We identify six interpretable triplets of components, each of which consists of three associated components from the three modalities. Besides, components from these triplets that show significant group differences between the HCs and SZs are identified, which could be seen as putative biomarkers in schizophrenia. 
    more » « less
  5. Abstract Neuroimaging studies, such as the Human Connectome Project (HCP), often collect multifaceted data to study the human brain. However, these data are often analyzed in a pairwise fashion, which can hinder our understanding of how different brain-related measures interact. In this study, we analyze the multi-block HCP data using data integration via analysis of subspaces (DIVAS). We integrate structural and functional brain connectivity, substance use, cognition, and genetics in an exhaustive five-block analysis. This gives rise to the important finding that genetics is the single data modality most predictive of brain connectivity, outside of brain connectivity itself. Nearly 14% of the variation in functional connectivity (FC) and roughly 12% of the variation in structural connectivity (SC) is attributed to shared spaces with genetics. Moreover, investigations of shared space loadings provide interpretable associations between particular brain regions and drivers of variability. Novel Jackstraw hypothesis tests are developed for the DIVAS framework to establish statistically significant loadings. For example, in the (FC, SC, and substance use) subspace, these novel hypothesis tests highlight largely negative functional and structural connections suggesting the brain’s role in physiological responses to increased substance use. Our findings are validated on genetically relevant subjects not studied in the main analysis. 
    more » « less