skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2112455

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. IntroductionTypical adolescent neurodevelopment is marked by decreases in grey matter (GM) volume, increases in myelination, measured by fractional anisotropy (FA), and improvement in cognitive performance. MethodsTo understand how epigenetic changes, methylation (DNAm) in particular, may be involved during this phase of development, we studied cognitive assessments, DNAm from saliva, and neuroimaging data from a longitudinal cohort of normally developing adolescents, aged nine to fourteen. We extracted networks of methylation with patterns of correlated change using a weighted gene correlation network analysis (WCGNA). Modules from these analyses, consisting of co-methylation networks, were then used in multivariate analyses with GM, FA, and cognitive measures to assess the nature of their relationships with cognitive improvement and brain development in adolescence. ResultsThis longitudinal exploration of co-methylated networks revealed an increase in correlated epigenetic changes as subjects progressed into adolescence. Co-methylation networks enriched for pathways involved in neuronal systems, potassium channels, neurexins and neuroligins were both conserved across time as well as associated with maturation patterns in GM, FA, and cognition. DiscussionOur research shows that correlated changes in the DNAm of genes in neuronal processes involved in adolescent brain development that were both conserved across time and related to typical cognitive and brain maturation, revealing possible epigenetic mechanisms driving this stage of development. 
    more » « less
    Free, publicly-accessible full text available January 7, 2026
  2. Abstract Schizophrenia is a chronic brain disorder associated with widespread alterations in functional brain connectivity. Although data-driven approaches such as independent component analysis are often used to study how schizophrenia impacts linearly connected networks, alterations within the underlying nonlinear functional connectivity structure remain largely unknown. Here we report the analysis of networks from explicitly nonlinear functional magnetic resonance imaging connectivity in a case–control dataset. We found systematic spatial variation, with higher nonlinear weight within core regions, suggesting that linear analyses underestimate functional connectivity within network centers. We also found that a unique nonlinear network incorporating default-mode, cingulo-opercular and central executive regions exhibits hypoconnectivity in schizophrenia, indicating that typically hidden connectivity patterns may reflect inefficient network integration in psychosis. Moreover, nonlinear networks including those previously implicated in auditory, linguistic and self-referential cognition exhibit heightened statistical sensitivity to schizophrenia diagnosis, collectively underscoring the potential of our methodology to resolve complex brain phenomena and transform clinical connectivity analysis. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract ObjectivesLate-life depression and white matter hyperintensities (WMH) have been linked to increased dementia risk. However, there is a dearth of literature examining these relationships in Black adults. We investigated whether depression or WMH volume are associated with a higher likelihood of dementia diagnosis in a sample of late middle-aged to older Black adults, and whether dementia prevalence is highest in individuals with both depression and higher WMH volume. MethodsSecondary data analysis involved 443 Black participants aged 55+ with brain imaging within 1 year of baseline visit in the National Alzheimer’s Coordinating Center Uniform Data Set. Chi-square analyses and logistic regression models controlling for demographic variables examined whether active depression in the past 2 years, WMH volume, or their combination were associated with higher odds of all-cause dementia. ResultsDepression and higher WMH volume were associated with a higher prevalence of dementia. These associations remained after controlling for demographic factors, as well as vascular disease burden. Dementia risk was highest in the depression/high WMH volume group compared to the depression-only group, high WMH volume-only group, and the no depression/low WMH volume group. Post hoc analyses comparing the Black sample to a demographically matched non-Hispanic White sample showed associations of depression and the combination of depression and higher WMH burden with dementia were greater in Black compared to non-Hispanic White individuals. DiscussionResults suggest late-life depression and WMH have independent and joint relationships with dementia and that Black individuals may be particularly at risk due to these factors. 
    more » « less
  4. Abstract ObjectivesBlack older adults have a higher vascular burden compared to non‐Hispanic White (NHW) older adults, which may put them at risk for a form of depression known as vascular depression (VaDep). The literature examining VaDep in Black older adults is sparse. The current study addressed this important gap by examining whether vascular burden was associated with depressive symptoms in Black older adults. MethodsParticipants included 113 Black older adults from the Healthy Brain Project, a substudy of the Health, Aging, and Body Composition Study. In multiple regression analyses, clinical vascular burden (sum of vascular conditions) and white matter hyperintensity (WMH) volume predicted depressive symptoms as measured by the Center for Epidemiologic Studies Depression Scale, controlling for demographic variables. Follow‐up analyses compared the associations in the Black subsample and in 179 NHW older adults. ResultsHigher total WMH volume, but not clinically‐defined vascular burden, predicted higher concurrent depressive symptoms and higher average depressive symptoms over 4 years. Similar associations were found between uncinate fasciculus (UF) WMHs and concurrent depressive symptoms and between superior longitudinal fasciculus WMHs and average depressive symptoms. The association between depressive symptoms and UF WMH was stronger in Black compared to NHW individuals. ConclusionThis research is consistent with the VaDep hypothesis and extends it to Black older adults, a group that has historically been underrepresented in the literature. Results highlight WMH in the UF as particularly relevant to depressive symptoms in Black older adults and suggest this group may be particularly vulnerable to the negative effects of WMH. 
    more » « less
  5. ABSTRACT Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro‐scale level as measured by resting‐state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags. However, to our knowledge, no studies have examined spatial propagation patterns evolving with time across multiple overlapping 4D networks. Here, we propose a novel approach to study how dynamic states of the brain networks spatially propagate and evaluate whether these propagating states contain information relevant to mental illness. We implement a lagged windowed correlation approach to capture voxel‐wise network‐specific spatial propagation patterns in dynamic states. Results show systematic spatial state changes over time, which we confirmed are replicable across multiple scan sessions using human connectome project data. We observe networks varying in propagation speed; for example, the default mode network (DMN) propagates slowly and remains positively correlated with blood oxygenation level‐dependent (BOLD) signal for 6–8 s, whereas the visual network propagates much quicker. We also show that summaries of network‐specific propagative patterns are linked to schizophrenia. More specifically, we find significant group differences in multiple dynamic parameters between patients with schizophrenia and controls within four large‐scale networks: default mode, temporal lobe, subcortical, and visual network. Individuals with schizophrenia spend more time in certain propagating states. In summary, this study introduces a promising general approach to exploring the spatial propagation in dynamic states of brain networks and their associated complexity and reveals novel insights into the neurobiology of schizophrenia. 
    more » « less
  6. Abstract Representing data using time-resolved networks is valuable for analyzing functional data of the human brain. One commonly used method for constructing time-resolved networks from data is sliding window Pearson correlation (SWPC). One major limitation of SWPC is that it applies a high-pass filter to the activity time series. Therefore, if we select a short window (desirable to estimate rapid changes in connectivity), we will remove important low-frequency information. Here, we propose an approach based on single sideband modulation (SSB) in communication theory. This allows us to select shorter windows to capture rapid changes in the time-resolved functional network connectivity (trFNC). We use simulation and real resting-state functional magnetic resonance imaging (fMRI) data to demonstrate the superior performance of SSB+SWPC compared to SWPC. We also compare the recurring trFNC patterns between individuals with the first episode of psychosis (FEP) and typical controls (TC) and show that FEPs stay more in states that show weaker connectivity across the whole brain. A result exclusive to SSB+SWPC is that TCs stay more in a state with negative connectivity between subcortical and cortical regions. Based on all the results, we argue that SSB+SWPC is more sensitive for capturing temporal variation in trFNC. 
    more » « less
  7. ABSTRACT With the increasing availability of large‐scale multimodal neuroimaging datasets, it is necessary to develop data fusion methods which can extract cross‐modal features. A general framework, multidataset independent subspace analysis (MISA), has been developed to encompass multiple blind source separation approaches and identify linked cross‐modal sources in multiple datasets. In this work, we utilized the multimodal independent vector analysis (MMIVA) model in MISA to directly identify meaningful linked features across three neuroimaging modalities—structural magnetic resonance imaging (MRI), resting state functional MRI and diffusion MRI—in two large independent datasets, one comprising of control subjects and the other including patients with schizophrenia. Results show several linked subject profiles (sources) that capture age‐associated decline, schizophrenia‐related biomarkers, sex effects, and cognitive performance. For sources associated with age, both shared and modality‐specific brain‐age deltas were evaluated for association with non‐imaging variables. In addition, each set of linked sources reveals a corresponding set of cross‐modal spatial patterns that can be studied jointly. We demonstrate that the MMIVA fusion model can identify linked sources across multiple modalities, and that at least one set of linked, age‐related sources replicates across two independent and separately analyzed datasets. The same set also presented age‐adjusted group differences, with schizophrenia patients indicating lower multimodal source levels. Linked sets associated with sex and cognition are also reported for the UK Biobank dataset. 
    more » « less
  8. IntroductionResting-state functional magnetic resonance imaging (rs-fMRI) is a powerful tool for assessing functional brain connectivity. Recent studies have focused on shorter-term connectivity and dynamics in the resting state. However, most of the prior work evaluates changes in time-series correlations. In this study, we propose a framework that focuses on time-resolved spectral coupling (assessed via the correlation between power spectra of the windowed time courses) among different brain circuits determined via independent component analysis (ICA). MethodsMotivated by earlier work suggesting significant spectral differences in people with schizophrenia, we developed an approach to evaluate time-resolved spectral coupling (trSC). To do this, we first calculated the correlation between the power spectra of windowed time-courses pairs of brain components. Then, we subgrouped each correlation map into four subgroups based on the connectivity strength utilizing quartiles and clustering techniques. Lastly, we examined clinical group differences by regression analysis for each averaged count and average cluster size matrices in each quartile. We evaluated the method by applying it to resting-state data collected from 151 (114 males, 37 females) people with schizophrenia (SZ) and 163 (117 males, 46 females) healthy controls (HC). ResultsOur proposed approach enables us to observe the change of connectivity strength within each quartile for different subgroups. People with schizophrenia showed highly modularized and significant differences in multiple network domains, whereas males and females showed less modular differences. Both cell count and average cluster size analysis for subgroups indicate a higher connectivity rate in the fourth quartile for the visual network in the control group. This indicates increased trSC in visual networks in the controls. In other words, this shows that the visual networks in people with schizophrenia have less mutually consistent spectra. It is also the case that the visual networks are less spectrally correlated on short timescales with networks of all other functional domains. ConclusionsThe results of this study reveal significant differences in the degree to which spectral power profiles are coupled over time. Importantly, there are significant but distinct differences both between males and females and between people with schizophrenia and controls. We observed a more significant coupling rate in the visual network for the healthy controls and males in the upper quartile. Fluctuations over time are complex, and focusing on only time-resolved coupling among time-courses is likely to miss important information. Also, people with schizophrenia are known to have impairments in visual processing but the underlying reasons for the impairment are still unknown. Therefore, the trSC approach can be a useful tool to explore the reasons for the impairments. 
    more » « less
  9. Abstract Despite increasing interest in the dynamics of functional brain networks, most studies focus on the changing relationships over time between spatially static networks or regions. Here we propose an approach to study dynamic spatial brain networks in human resting state functional magnetic resonance imaging (rsfMRI) data and evaluate the temporal changes in the volumes of these 4D networks. Our results show significant volumetric coupling (i.e., synchronized shrinkage and growth) between networks during the scan, that we refer to as dynamic spatial network connectivity (dSNC). We find that several features of such dynamic spatial brain networks are associated with cognition, with higher dynamic variability in these networks and higher volumetric coupling between network pairs positively associated with cognitive performance. We show that these networks are modulated differently in individuals with schizophrenia versus typical controls, resulting in network growth or shrinkage, as well as altered focus of activity within a network. Schizophrenia also shows lower spatial dynamical variability in several networks, and lower volumetric coupling between pairs of networks, thus upholding the role of dynamic spatial brain networks in cognitive impairment seen in schizophrenia. Our data show evidence for the importance of studying the typically overlooked voxel‐wise changes within and between brain networks. 
    more » « less
  10. Abstract In neuroimaging research, understanding the intricate dynamics of brain networks over time is paramount for unraveling the complexities of brain function. One approach commonly used to explore the dynamic nature of brain networks is functional connectivity analysis. However, while functional connectivity offers valuable insights, it fails to consider the diverse timescales of coupling between different brain regions. This gap in understanding leaves a significant aspect of brain dynamics unexplored in neuroimaging research. We propose an innovative approach that delves into the dynamic coupling/connectivity timescales of brain regions relative to one another, focusing on how brain region couplings stretch or shrink over time, rather than relying solely on functional connectivity measures. Our method introduces a novel metric called “warping elasticity,” which utilizes dynamic time warping (DTW) to capture the temporal nuances of connectivity. Unlike traditional methods, our approach allows for (potentially nonlinear) dynamic compression and expansion of the time series, offering a more intricate understanding of how coupling between brain regions evolves. Through the adaptive windows employed by the DTW method, we can effectively capture transient couplings within varying connectivity timescales of brain network pairs. In extensive evaluations, our method exhibits high replicability across subjects and diverse datasets, showcasing robustness against noise. More importantly, it uncovers statistically significant distinctions between healthy control (HC) and schizophrenia (SZ) groups through the identification of warp elasticity states. These states are cluster centroids, representing the warp elasticity across subjects and time, offering a novel perspective on the dynamic nature of brain connectivity, distinct from conventional metrics focused solely on functional connectivity. For instance, controls spend more time in a warp elasticity state characterized by timescale stretching of the visual domain relative to other domains, suggesting disruptions in the visual cortex. Conversely, patients show increased time spent in a warp elasticity state with stretching timescales in higher cognitive areas relative to sensory regions, indicative of prolonged cognitive processing of sensory input. Overall, our approach presents a promising avenue for investigating the temporal dynamics of brain network interactions in functional magnetic resonance imaging (fMRI) data. By focusing on the elasticity of connectivity timescales, rather than adhering to functional connectivity metrics, we pave the way for a deeper understanding of neuropsychiatric disorders in neuroscience research. 
    more » « less