skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transport and emergent stratification in the equilibrated Eady model: the vortex-gas scaling regime
We numerically and theoretically investigate the Boussinesq Eady model, where a rapidly rotating density-stratified layer of fluid is subject to a meridional temperature gradient in thermal wind balance with a uniform vertically sheared zonal flow. Through a suite of numerical simulations, we show that the transport properties of the resulting turbulent flow are governed by quasigeostrophic (QG) dynamics in the rapidly rotating strongly stratified regime. The ‘vortex gas’ scaling predictions put forward in the context of the two-layer QG model carry over to this fully three-dimensional system: the functional dependence of the meridional flux on the control parameters is the same, the two adjustable parameters entering the theory taking slightly different values. In line with the QG prediction, the meridional heat flux is depth-independent. The vertical heat flux is such that turbulence transports buoyancy along isopycnals, except in narrow layers near the top and bottom boundaries, the thickness of which decreases as the diffusivities go to zero. The emergent (re)stratification is set by a simple balance between the vertical heat flux and diffusion along the vertical direction. Overall, this study demonstrates how the vortex-gas scaling theory can be adapted to quantitatively predict the magnitude and vertical structure of the meridional and vertical heat fluxes, and of the emergent stratification, without additional fitting parameters.  more » « less
Award ID(s):
1835576
PAR ID:
10381664
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
948
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this study, we investigate and develop scaling laws as a function of external non-dimensional control parameters for heat and momentum transport for non-rotating, slowly rotating and rapidly rotating turbulent convection systems, with the end goal of forging connections and bridging the various gaps between these regimes. Two perspectives are considered, one where turbulent convection is viewed from the standpoint of an applied temperature drop across the domain and the other with a viewpoint in terms of an applied heat flux. While a straightforward transformation exist between the two perspectives indicating equivalence, it is found the former provides a clear set of connections that bridge between the three regimes. Our generic convection scalings, based upon an Inertial-Archimedean balance, produce the classic diffusion-free scalings for the non-rotating limit (NRL) and the slowly rotating limit (SRL). This is characterized by a free-falling fluid parcel on the global scale possessing a thermal anomaly on par with the temperature drop across the domain. In the rapidly rotating limit (RRL), the generic convection scalings are based on a Coriolis-Inertial-Archimedean (CIA) balance, along with a local fluctuating-mean advective temperature balance. This produces a scenario in which anisotropic fluid parcels attain a thermal wind velocity and where the thermal anomalies are greatly attenuated compared to the total temperature drop. We find that turbulent scalings may be deduced simply by consideration of the generic non-dimensional transport parameters --- local Reynolds $$Re_\ell = U \ell /\nu$$; local P\'eclet $$Pe_\ell = U \ell /\kappa$$; and Nusselt number $$Nu = U \vartheta/(\kappa \Delta T/H)$$ --- through the selection of physically relevant estimates for length $$\ell$$, velocity $$U$$ and temperature scales $$\vartheta$$ in each regime. Emergent from the scaling analyses is a unified continuum based on a single external control parameter, the convective Rossby number\JMA{,} $$\RoC = \sqrt{g \alpha \Delta T / 4 \Omega^2 H}$$, that strikingly appears in each regime by consideration of the local, convection-scale Rossby number $$\Rol=U/(2\Omega \ell)$$. Thus we show that $$\RoC$$ scales with the local Rossby number $$\Rol$$ in both the slowly rotating and the rapidly rotating regimes, explaining the ubiquity of $$\RoC$$ in rotating convection studies. We show in non-, slowly, and rapidly rotating systems that the convective heat transport, parameterized via $$Pe_\ell$$, scales with the total heat transport parameterized via the Nusselt number $Nu$. Within the rapidly-rotating limit, momentum transport arguments generate a scaling for the system-scale Rossby number, $$Ro_H$$, that, recast in terms of the total heat flux through the system, is shown to be synonymous with the classical flux-based `CIA' scaling, $$Ro_{CIA}$$. These, in turn, are then shown to asymptote to $$Ro_H \sim Ro_{CIA} \sim \RoC^2$$, demonstrating that these momentum transport scalings are identical in the limit of rapidly rotating turbulent heat transfer. 
    more » « less
  2. null (Ed.)
    Abstract ‘Horizontal convection’ (HC) is the generic name for the flow resulting from a buoyancy variation imposed along a horizontal boundary of a fluid. We study the effects of rotation on three-dimensional HC numerically in two stages: first, when baroclinic instability is suppressed and, second, when it ensues and baroclinic eddies are formed. We concentrate on changes to the thickness of the near-surface boundary layer, the stratification at depth, the overturning circulation and the flow energetics during each of these stages. Our results show that, for moderate flux Rayleigh numbers ( $$O(1{0}^{11} )$$ ), rapid rotation greatly alters the steady-state solution of HC. When the flow is constrained to be uniform in the transverse direction, rapidly rotating solutions do not support a boundary layer, exhibit weaker overturning circulation and greater stratification at all depths. In this case, diffusion is the dominant mechanism for lateral buoyancy flux and the consequent buildup of available potential energy leads to baroclinically unstable solutions. When these rapidly rotating flows are perturbed, baroclinic instability develops and baroclinic eddies dominate both the lateral and vertical buoyancy fluxes. The resulting statistically steady solution supports a boundary layer, larger values of deep stratification and multiple overturning cells compared with non-rotating HC. A transformed Eulerian-mean approach shows that the residual circulation is dominated by the quasi-geostrophic eddy streamfunction and that the eddy buoyancy flux has a non-negligible interior diabatic component. The kinetic and available potential energies are greater than in the non-rotating case and the mixing efficiency drops from $${\sim }0. 7$$ to $${\sim }0. 17$$ . The eddies play an important role in the formation of the thermal boundary layer and, together with the negatively buoyant plume, help establish deep stratification. These baroclinically active solutions have characteristics of geostrophic turbulence. 
    more » « less
  3. Abstract The meridional temperature profile of the upper layers of planetary atmospheres is set through a balance between differential radiative heating by a nearby star, or by intrinsic heat fluxes emanating from the deep interior, and the redistribution of that heat across latitudes by turbulent flows. These flows spontaneously arise through baroclinic instability of the meridional temperature gradients maintained by the forcing. When planetary curvature is neglected, this turbulence takes the form of coherent vortices that mix the meridional temperature profiles. However, the curvature of the planet favors the emergence of Rossby waves and zonal jets that restrict the meridional wandering of the fluid columns, thereby reducing the mixing efficiency across latitudes. A similar situation arises in the ocean, where the baroclinic instability of zonal currents leads to enhanced meridional heat transport by a turbulent flow consisting of vortices and zonal jets. A recent scaling theory for the turbulent heat transport by vortices is extended to include the impact of planetary curvature, in the framework of the two‐layer quasi‐geostrophic beta‐plane model. This leads to a quantitative parameterization providing the meridional temperature profile in terms of the externally imposed heat flux in an idealized model of planetary atmospheres and oceans. In addition, it provides a quantitative prediction for the emergent criticality, that is, the degree of instability in a canonical model of planetary atmosphere or ocean. 
    more » « less
  4. Abstract A persistent spatial organization of eddies is identified in the lowest portion of the stably stratified planetary boundary layer. The analysis uses flow realizations from published large-eddy simulations (Sullivan et al. in J Atmos Sci 73(4):1815–1840, 2016) ranging in stability from near-neutral to almost z-less stratification. The coherent turbulent structure is well approximated as a series of uniform momentum zones (UMZs) and uniform temperature zones (UTZs) separated by thin layers of intense gradients that are significantly greater than the mean. This pattern yields stairstep-like instantaneous flow profiles whose shape is distinct from the mean profiles that emerge from long-term averaging. However, the scaling of the stairstep organization is closely related to the resulting mean profiles. The differences in velocity and temperature across the thin gradient layers remain proportional to the surface momentum and heat flux conditions regardless of stratification. The vertical thickness of UMZs and UTZs is proportional to height above the surface for near-neutral and weak stratification, but becomes thinner and less dependent on height as the stability increases. Deviations from the logarithmic mean profiles for velocity and temperature observed under neutral conditions are therefore predominately due to the reduction in eddy size with increasing stratification, which is empirically captured by existing Monin–Obukhov similarity relations for momentum and heat. The zone properties are additionally used to explain trends in the turbulent Prandtl number, thus providing a connection between the eddy organization, mean profiles, and turbulent diffusivity in stably stratified conditions. 
    more » « less
  5. The solar tachocline is a thin internal boundary layer in the Sun located between the differentially rotating convection zone and the uniformly rotating region of the radiative interior beneath. E. A. Spiegel & J. P. Zahn proposed the first hydrodynamical model, which here we call SZ92, arguing that the tachocline is essentially in a steady state of thermal-wind balance, angular-momentum balance, and thermal equilibrium. Angular momentum transport in their model is assumed to be dominated by strongly anisotropic turbulence, which is primarily horizontal, owing to the strong stable stratification of the radiative interior. By contrast, the heat transport is assumed to be dominated by a predominantly vertical diffusive heat flux, owing to the thinness of the tachocline. In this paper, we demonstrate that these assumptions are not consistent with the new model of stratified turbulence recently proposed by G. P. Chini et al. and K. Shah et al., which has been numerically validated by P. Garaud et al. We then propose a simple self-consistent alternative to the SZ92 model—namely, a scenario wherein angular momentum and heat transport are both dominated by horizontal turbulent diffusion. The thickness of the tachocline in the new model scales as Ω/N, where Ω is the mean angular velocity of the Sun and N is the characteristic buoyancy frequency in the tachocline region. We discuss other properties of the model and show that it has several desirable features but does not resolve some of the other well-known problems of the SZ92 model. 
    more » « less