skip to main content


Title: Probing the mesoscopic size limit of quantum anomalous Hall insulators
Abstract

The inelastic scattering length (Ls) is a length scale of fundamental importance in condensed matters due to the relationship between inelastic scattering and quantum dephasing. In quantum anomalous Hall (QAH) materials, the mesoscopic length scaleLsplays an instrumental role in determining transport properties. Here we examineLsin three regimes of the QAH system with distinct transport behaviors: the QAH, quantum critical, and insulating regimes. Although the resistance changes by five orders of magnitude when tuning between these distinct electronic phases, scaling analyses indicate a universalLsamong all regimes. Finally, mesoscopic scaled devices with sizes on the order ofLswere fabricated, enabling the direct detection of the value ofLsin QAH samples. Our results unveil the fundamental length scale that governs the transport behavior of QAH materials.

 
more » « less
Award ID(s):
1936383
NSF-PAR ID:
10381673
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The circulation within marginal seas subject to periodic winds, and their exchange with the open ocean, are explored using idealized numerical models and theory. This is motivated by the strong seasonal cycle in winds over the Nordic Seas and the exchange with the subpolar North Atlantic Ocean through the Denmark Strait and Faroe Bank Channel. Two distinct regimes are identified: an interior with closedf/hcontours and a shallow shelf region that connects to the open ocean. The interior develops a strong oscillating along-topography circulation with weaker ageostrophic radial flows. The relative importance of the bottom Ekman layer and interior ageostrophic flows depends only onωh/Cd, whereωis the forcing frequency,his the bottom depth, andCdis a linear bottom drag coefficient. The dynamics on the shelf are controlled by the frictional decay of coastal waves over an along-shelf scaleLy=f0LsHs/Cd, wheref0is the Coriolis parameter, andLsandHsare the shelf width and depth. ForLymuch less than the perimeter of the basin, the surface Ekman transport is provided primarily by overturning within the marginal sea and there is little exchange with the open ocean. ForLyon the order of the basin perimeter or larger, most of the Ekman transport is provided from outside the marginal sea with an opposite exchange through the deep part of the strait. This demonstrates a direct connection between the dynamics of coastal waves on the shelf and the exchange of deep waters through the strait, some of which is derived from below sill depth.

    Significance Statement

    The purpose of this study is to understand how winds over marginal seas, which are semienclosed bodies of water around the perimeter of ocean basins, can force an exchange of water, heat, salt, and other tracers through narrow straits between the marginal sea and the open ocean. Understanding this exchange is important because marginal seas are often regions of net heat, freshwater, and carbon exchange with the atmosphere. The present results identify a direct connection between processes along the coast of the marginal sea and the flow of waters through deep straits into the open ocean.

     
    more » « less
  2. Abstract

    Thermal transport in amorphous lithium‐sulfur (a‐LixS) is systematically investigated using molecular dynamics and the contributions from different types of heat carriers are quantitatively evaluated. In general, the thermal conductivity (TC) ofa‐LixS changes largely by varying the concentration (x) of Li ions ina‐LixS. Interestingly, the TC ofa‐LixS shows three distinct regimes of dependence on Li concentration. For low Li concentration (x = 0.4–1.2), the TC grows slowly, followed by a rapid increase in TC for medium Li concentration (x = 1.2–1.6), where the growth rate is three times that of the first regime, and finally, the TC is independent of Li concentration (x = 1.6–2.0). The TC enhancement in the first and second regimes is mainly attributed to propagating and non‐propagating vibrational modes ina‐LixS, respectively. In contrast, the stable thermal transport regime is governed by the competition between propagating and non‐propagating phonons. These investigations provide quantitative TC data of various polysulfides for shuttling analysis, and a fundamental understanding of the thermal transport mechanism of complexa‐LixS structures, which is beneficial for the rational design of thermal management of Li‐S batteries.

     
    more » « less
  3. Abstract

    The physical realization of Chern insulators is of fundamental and practical interest, as they are predicted to host the quantum anomalous Hall (QAH) effect and topologically protected chiral edge states which can carry dissipationless current. Current realizations of the QAH state often require complex heterostructures and sub-Kelvin temperatures, making the discovery of intrinsic, high temperature QAH systems of significant interest. In this work we show that time-reversal symmetry breaking Weyl semimetals, being essentially stacks of Chern insulators with inter-layer coupling, may provide a new platform for the higher temperature realization of robust chiral edge states. We present combined scanning tunneling spectroscopy and theoretical investigations of the magnetic Weyl semimetal, Co3Sn2S2. Using modeling and numerical simulations we find that depending on the strength of the interlayer coupling, chiral edge states can be localized on partially exposed kagome planes on the surfaces of a Weyl semimetal. Correspondingly, our dI/dVmaps on the kagome Co3Sn terraces show topological states confined to the edges which display linear dispersion. This work provides a new paradigm for realizing chiral edge modes and provides a pathway for the realization of higher temperature QAH effect in magnetic Weyl systems in the two-dimensional limit.

     
    more » « less
  4. Abstract

    Two-dimensional (2D) materials have emerged as the ideal candidates for many applications, including nanoelectronics, low-power devices, and sensors. Several 2D materials have been shown to possess large Seebeck coefficients, thus making them suitable for thermoelectric (TE) energy conversion. Whether even higher TE power factors can be discovered among the ≈2000 possible 2D materials (Mounetet al2018Nat. Nanotechnol.13246–52) is an open question. This study aims at formulating selection rules to guide the search for superior 2D TE materials without the need for expensive atomistic simulations. We show that a 2D material having a combination of low effective mass, higher separation in the height of the step-like density of states, and valley splitting, which is the energy difference between the bottom of conduction band and the satellite valley, equal to 5kBTwill lead to a higher TE power factor. Further, we find that inelastic scattering with optical phonons plays a significant role: if inelastic scattering is the dominant mechanism and the energy of the optical phonon equals 5kBT, then the TE power factor is maximized. Starting from a model for carrier transport in MoS2and progressively introducing the aforementioned features results in a two-orders-of-magnitude improvement in the power factor. Compared to the existing selection rules or material descriptors, features identified in this study provide the ability to comprehensively evaluate TE capability of a material and helps in identifying future TE materials suitable for applications in waste-heat scavenging, thermal sensors, and nanoelectronics cooling.

     
    more » « less
  5. Abstract

    In Landau’s Fermi liquid picture, transport is governed by scattering between quasi-particles. The normal liquid3He conforms to this picture but only at very low temperature. Here, we show that the deviation from the standard behavior is concomitant with the fermion-fermion scattering time falling below the Planckian time,$$\frac{\hslash }{{k}_{{{{{{{{\rm{B}}}}}}}}}T}$$kBTand the thermal diffusivity of this quantum liquid is bounded by a minimum set by fundamental physical constants and observed in classical liquids. This points to collective excitations (a sound mode) as carriers of heat. We propose that this mode has a wavevector of 2kFand a mean free path equal to the de Broglie thermal length. This would provide an additional conducting channel with aT1/2temperature dependence, matching what is observed by experiments. The experimental data from 0.007 K to 3 K can be accounted for, with a margin of 10%, if thermal conductivity is the sum of two contributions: one by quasi-particles (varying as the inverse of temperature) and another by sound (following the square root of temperature).

     
    more » « less