skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of Dual Domain Mass Transfer in Porous Media at the Pore Scale
Abstract Dual‐porosity models are often used to describe solute transport in heterogeneous media, but the parameters within these models (e.g., immobile porosity and mobile/immobile exchange rate coefficients) are difficult to identify experimentally or relate to measurable quantities. Here, we performed synthetic, pore‐scale millifluidics simulations that coupled fluid flow, solute transport, and electrical resistivity (ER). A conductive‐tracer test and the associated geoelectrical signatures were simulated for four flow rates in two distinct pore‐scale model scenarios: one with intergranular porosity, and a second with an intragranular porosity also defined. With these models, we explore how the effective characteristic‐length scale estimated from a best‐fit dual‐domain mass transfer (DDMT) model compares to geometric aspects of the flow field. In both model scenarios we find that: (1) mobile domains and immobile domains develop even in a system that is explicitly defined with one domain; (2) the ratio of immobile to mobile porosity is larger at faster flow rates as is the mass‐transfer rate; and (3) a comparison of length scales associated with the mass‐transfer rate (Lα) and those associated with calculation of the Peclet number (LPe) showLPeis commonly larger thanLα. These results suggest that estimated immobile porosities from a DDMT model are not only a function of physically mobile or immobile pore space, but also are a function of the average linear pore‐water velocity and physical obstructions to flow, which can drive the development of immobile porosity even in single‐porosity domains.  more » « less
Award ID(s):
2012730
PAR ID:
10645664
Author(s) / Creator(s):
;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Groundwater
Volume:
62
Issue:
2
ISSN:
0017-467X
Format(s):
Medium: X Size: p. 260-275
Size(s):
p. 260-275
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Field measurements of hydrologic tracers indicate varying magnitudes of geochemical separation between subsurface pore waters. The potential for conventional soil physics alone to explain isotopic differences between preferential flow and tightly-bound water remains unclear. Here, we explore physical drivers of isotopic separations using 650 different model configurations of soil, climate, and mobile/immobile soil-water domain characteristics, without confounding fractionation or plant uptake effects. We find simulations with coarser soils and less precipitation led to reduced separation between pore spaces and drainage. Amplified separations are found with larger immobile domains and, to a lesser extent, higher mobile-immobile transfer rates. Nonetheless, isotopic separations remained small (<4‰ for δ2H) across simulations, indicating that contrasting transport dynamics generate limited geochemical differences. Therefore, conventional soil physics alone are unlikely to explain large ecohydrological separations observed elsewhere, and further efforts aimed at reducing methodological artifacts, refining understanding of fractionation processes, and investigating new physiochemical mechanisms are needed. 
    more » « less
  2. The accurate measurement of wall zeta potentials and solute–surface interaction length scales for electrolyte and non-electrolyte solutes, respectively, is critical to the design of many biomedical and microfluidic applications. We present a novel microfluidic approach using diffusioosmosis for measuring either the zeta potentials or the characteristic interaction length scales for surfaces exposed to, respectively, electrolyte or non-electrolyte solutes. When flows containing different solute concentrations merge in a junction, local solute concentration gradients can drive diffusioosmotic flow due to electrokinetic, steric, and other interactions between the solute molecules and solid surfaces. We demonstrate a microfluidic system consisting of a long, narrow pore connecting two large side channels in which solute concentration gradients drive diffusioosmosis within the pore, resulting in predictable fluid velocity/pressure and solute profiles. Furthermore, we present analytical results and a methodology to determine the zeta potential or interaction length scale for the pore surfaces based on the solute concentrations in the main side channels, the flow rate in the pore, and the pressure drop across the pore. We apply this method to the experimental data of Lee et al. to predict the zeta potentials of their system, and we use 3D numerical simulations to validate the theory and show that end effects caused by the junctions are negligible for a wide range of parameters. Because the dynamics in the proposed system are driven by diffusioosmosis, this technique does not suffer from certain disadvantages associated with the use of sensitive electronics in traditional zeta potential measurement approaches such as streaming potential, streaming current, or electroosmosis. To the best of our knowledge this is the first flow-based approach to characterize surface/solute interactions with non-electrolyte solutes. 
    more » « less
  3. Abstract Spreading and mixing are complementary processes that promote reaction of two reactive aqueous solutes present in contiguous plumes in groundwater. Spreading reconfigures the plume geometry, elongating the interface between the plumes, while mixing increases the volume of aquifer occupied by each plume, bringing the solute molecules together to react. Since reaction only occurs where the two solute plumes are in contact with each other, local mechanisms that drive flow and transport near the interface between the plumes control the amount of reaction. This work uses local characteristics of the plumes and the flow field near the plume interface to analyze the relative contributions of pore‐scale mixing and mechanical dispersion to instantaneous, irreversible, bimolecular reaction in a homogeneous aquifer with active spreading caused by radial flow from a well. Two solutes are introduced in sequence at the well, creating concentric circular plumes. We allow for incomplete mixing of the solutes in the pore space, by modeling the pore space as a segregated compartment and a mixed compartment with first‐order mass transfer between the two compartments. We develop semi‐analytical expressions for concentrations of the solutes in both compartments. We found that the relative contribution of mechanical dispersion to reaction increases over time and also increases due to increases in the Peclet number, in the relative source concentration of the chasing solute, and in the mass transfer rate from the segregated compartment to the mixed compartment of the pore space. 
    more » « less
  4. Bubble-mediated gas exchange in turbulent flow is critical in bubble column chemical reactors as well as for ocean–atmosphere gas exchange related to air entrained by breaking waves. Understanding the transfer rate from a single bubble in turbulence at large Péclet numbers (defined as the ratio between the rate of advection and diffusion of gas) is important as it can be used for improving models on a larger scale. We characterize the mass transfer of dilute gases from a single bubble in a homogeneous isotropic turbulent flow in the limit of negligible bubble volume variations. We show that the mass transfer occurs within a thin diffusive boundary layer at the bubble–liquid interface, whose thickness decreases with an increase in turbulent Péclet number, $$\widetilde {{Pe}}$$ . We propose a suitable time scale $$\theta$$ for Higbie ( Trans. AIChE , vol. 31, 1935, pp. 365–389) penetration theory, $$\theta = d_0/\tilde {u}$$ , based on $$d_0$$ the bubble diameter and $$\tilde {u}$$ a characteristic turbulent velocity, here $$\tilde {u}=\sqrt {3}\,u_{{rms}}$$ , where $$u_{{rms}}$$ is the large-scale turbulence fluctuations. This leads to a non-dimensional transfer rate $${Sh} = 2(3)^{1/4}\sqrt {\widetilde {{Pe}}/{\rm \pi} }$$ from the bubble in the isotropic turbulent flow. The theoretical prediction is verified by direct numerical simulations of mass transfer of dilute gas from a bubble in homogeneous and isotropic turbulence, and very good agreement is observed as long as the thin boundary layer is properly resolved. 
    more » « less
  5. Yongjin J. Zhou (Ed.)
    Abstract A new biomanufacturing platform combining intracellular metabolic engineering of the oleaginous yeastYarrowia lipolyticaand extracellular bioreaction engineering provides efficient bioconversion of plant oils/animal fats into high‐value products. However, predicting the hydrodynamics and mass transfer parameters is difficult due to the high agitation and sparging required to create dispersed oil droplets in an aqueous medium for efficient yeast fermentation. In the current study, commercial computational fluid dynamic (CFD) solver Ansys CFX coupled with the MUSIG model first predicts two‐phase system (oil/water and air/water) mixing dynamics and their particle size distributions. Then, a three‐phase model (oil, air, and water) utilizing dispersed air bubbles and a polydispersed oil phase was implemented to explore fermenter mixing, gas dispersion efficiency, and volumetric mass transfer coefficient estimations (kLa). The study analyzed the effect of the impeller type, agitation speed, and power input on the tank's flow field and revealed that upward‐pumping pitched blade impellers (PBI) in the top two positions (compared to Rushton‐type) provided advantageous oil phase homogeneity and similar estimatedkLavalues with reduced power. These results show good agreement with the experimental mixing andkLadata. 
    more » « less