Abstract The quantum approximate optimization algorithm (QAOA) is an approach for near-term quantum computers to potentially demonstrate computational advantage in solving combinatorial optimization problems. However, the viability of the QAOA depends on how its performance and resource requirements scale with problem size and complexity for realistic hardware implementations. Here, we quantify scaling of the expected resource requirements by synthesizing optimized circuits for hardware architectures with varying levels of connectivity. Assuming noisy gate operations, we estimate the number of measurements needed to sample the output of the idealized QAOA circuit with high probability. We show the number of measurements, and hence total time to solution, grows exponentially in problem size and problem graph degree as well as depth of the QAOA ansatz, gate infidelities, and inverse hardware graph degree. These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
more »
« less
Constrained quantum optimization for extractive summarization on a trapped-ion quantum computer
Abstract Realizing the potential of near-term quantum computers to solve industry-relevant constrained-optimization problems is a promising path to quantum advantage. In this work, we consider the extractive summarization constrained-optimization problem and demonstrate the largest-to-date execution of a quantum optimization algorithm that natively preserves constraints on quantum hardware. We report results with the Quantum Alternating Operator Ansatz algorithm with a Hamming-weight-preserving XY mixer (XY-QAOA) on trapped-ion quantum computer. We successfully execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using up to 20 qubits and a two-qubit gate depth of up to 159. We demonstrate the necessity of directly encoding the constraints into the quantum circuit by showing the trade-off between the in-constraint probability and the quality of the solution that is implicit if unconstrained quantum optimization methods are used. We show that this trade-off makes choosing good parameters difficult in general. We compare XY-QAOA to the Layer Variational Quantum Eigensolver algorithm, which has a highly expressive constant-depth circuit, and the Quantum Approximate Optimization Algorithm. We discuss the respective trade-offs of the algorithms and implications for their execution on near-term quantum hardware.
more »
« less
- Award ID(s):
- 2120757
- PAR ID:
- 10373700
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hard combinatorial optimization problems, often mapped to Ising models, promise potential solutions with quantum advantage but are constrained by limited qubit counts in near-term devices. We present an innovative quantum-inspired framework that dynamically compresses large Ising models to fit available quantum hardware of different sizes. Thus, we aim to bridge the gap between large-scale optimization and current hardware capabilities. Our method leverages a physics-inspired GNN architecture to capture complex interactions in Ising models and accurately predict alignments among neighboring spins (aka qubits) at ground states. By progressively merging such aligned spins, we can reduce the model size while preserving the underlying optimization structure. It also provides a natural trade-off between the solution quality and size reduction, meeting different hardware constraints of quantum computing devices. Extensive numerical studies on Ising instances of diverse topologies show that our method can reduce instance size at multiple levels with virtually no losses in solution quality on the latest D-wave quantum annealers.more » « less
-
Chakraborty, Supratik; Jiang, Jie-Hong Roland (Ed.)Quantum Computing (QC) is a new computational paradigm that promises significant speedup over classical computing in various domains. However, near-term QC faces numerous challenges, including limited qubit connectivity and noisy quantum operations. To address the qubit connectivity constraint, circuit mapping is required for executing quantum circuits on quantum computers. This process involves performing initial qubit placement and using the quantum SWAP operations to relocate non-adjacent qubits for nearest-neighbor interaction. Reducing the SWAP count in circuit mapping is essential for improving the success rate of quantum circuit execution as SWAPs are costly and error-prone. In this work, we introduce a novel circuit mapping method by combining incremental and parallel solving for Boolean Satisfiability (SAT). We present an innovative SAT encoding for circuit mapping problems, which significantly improves solver-based mapping methods and provides a smooth trade-off between compilation quality and compilation time. Through comprehensive benchmarking of 78 instances covering 3 quantum algorithms on 2 distinct quantum computer topologies, we demonstrate that our method is 26× faster than state-of-the-art solver-based methods, reducing the compilation time from hours to minutes for important quantum applications. Our method also surpasses the existing heuristics algorithm by 26% in SWAP count.more » « less
-
We compare the performance of the Quantum Approximate Optimization Algorithm (QAOA) with state-of-the-art classical solvers Gurobi and MQLib to solve the MaxCut problem on 3-regular graphs. We identify the minimum noiseless sampling frequency and depthprequired for a quantum device to outperform classical algorithms. There is potential for quantum advantage on hundreds of qubits and moderate depth with a sampling frequency of 10 kHz. We observe, however, that classical heuristic solvers are capable of producing high-quality approximate solutions in linear time complexity. In order to match this quality for large graph sizesN, a quantum device must support depthp > 11. Additionally, multi-shot QAOA is not efficient on large graphs, indicating that QAOAp ≤ 11 does not scale withN. These results limit achieving quantum advantage for QAOA MaxCut on 3-regular graphs. Other problems, such as different graphs, weighted MaxCut, and 3-SAT, may be better suited for achieving quantum advantage on near-term quantum devices.more » « less
-
Combinatorial optimization is anticipated to be one of the primary use cases for quantum computation in the coming years. The Quantum Approximate Optimization Algorithm and Quantum Annealing can potentially demonstrate significant run-time performance benefits over current state-of-the-art solutions. Inspired by existing methods to characterize classical optimization algorithms, we analyze the solution quality obtained by solving Max-cut problems using gate-model quantum devices and a quantum annealing device. This is used to guide the development of an advanced benchmarking framework for quantum computers designed to evaluate the trade-off between run-time execution performance and the solution quality for iterative hybrid quantum-classical applications. The framework generates performance profiles through compelling visualizations that show performance progression as a function of time for various problem sizes and illustrates algorithm limitations uncovered by the benchmarking approach. As an illustration, we explore the factors that influence quantum computing system throughput, using results obtained through execution on various quantum simulators and quantum hardware systems.more » « less