Abstract Boron nitride nanotubes (BNNTs) are emerging nanomaterials with analogous structures and similarly impressive mechanical properties to carbon nanotubes (CNTs), but unique chemistry and complimentary multifunctional properties, including higher thermal stability, electrical insulation, optical transparency, neutron absorption capability, and piezoelectricity. Over the past decade, advances in synthesis have made BNNTs more broadly accessible to the nanomaterials and other research communities, removing a major barrier to their utilization and research. Therefore, the field is poised to grow rapidly and see the emergence of BNNT applications ranging from electronics to aerospace materials. A key challenge, that is being gradually overcome, is the development of manufacturing processes to make “neat” BNNT materials. This overview highlights the history and current status of the field, providing both an introduction to this Focus Issue—BNNTs: Synthesis to Applications—as well as a perspective on advances, challenges, and opportunities for this emerging material. Graphical abstract 
                        more » 
                        « less   
                    
                            
                            Liquid crystals of neat boron nitride nanotubes and their assembly into ordered macroscopic materials
                        
                    
    
            Abstract Boron nitride nanotubes (BNNTs) have attracted attention for their predicted extraordinary properties; yet, challenges in synthesis and processing have stifled progress on macroscopic materials. Recent advances have led to the production of highly pure BNNTs. Here we report that neat BNNTs dissolve in chlorosulfonic acid (CSA) and form birefringent liquid crystal domains at concentrations above 170 ppmw. These tactoidal domains merge into millimeter-sized regions upon light sonication in capillaries. Cryogenic electron microscopy directly shows nematic alignment of BNNTs in solution. BNNT liquid crystals can be processed into aligned films and extruded into neat BNNT fibers. This study of nematic liquid crystals of BNNTs demonstrates their ability to form macroscopic materials to be used in high-performance applications. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10381682
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Controlling the thermal expansion of ceramic materials is important for many of their applications that involve high-temperature processing and/or working conditions. In this study, we investigate the thermal expansion properties of additively manufactured alumina that is reinforced with boron nitride nanotubes (BNNTs) over a broad temperature range, from room temperature to 900 °C. The coefficient of thermal expansion (CTE) of the BNNT-alumina nanocomposite increases with temperature but decreases with an increase in BNNT loading. The introduction of 0.6% BNNTs results in an approximate 16% reduction in the CTE of alumina. The observed significant CTE reduction of ceramics is attributed to the BNNT’s low CTE and ultrahigh Young’s modulus, and effective interfacial load transfer at the BNNT-ceramic interface. Micromechanical analysis, based onin situRaman measurements, reveals the transition of thermal-expansion-induced interface straining of nanotubes, which shifts from compression to tension inside the ceramic matrix under thermal loadings. This study provides valuable insights into the thermomechanical behavior of BNNT-reinforced ceramic nanocomposites and contributes to the optimal design of ceramic materials with tunable and zero CTE.more » « less
- 
            Abstract Cellulose nanofibers (NFCs) have emerged as a preferred choice for fabricating nanomaterials with exceptional mechanical properties. At the same time, boron nitride nanotubes (BNNTs) have long been favored in thermal management devices due to their superior thermal conductivity (k). This study uses reverse non-equilibrium molecular dynamics (MD) simulations to investigatekfor a hybrid material based on NFCs and BNNTs. The result is then compared with pure NFC and BNNT-based structures with equivalent total weight content to elucidate how incorporating BNNT fillers enhanceskfor the hybrid system. Furthermore, the fundamental phonon vibration modes responsible for driving thermal transport in NFC-based materials upon incorporating BNNTS are identified by computing the vibrational density of states from the Fourier transform analysis of the averaged mass-weighted velocity autocorrelation function. Additionally, MD simulations demonstrate how both NFCs and BNNTs synergistically improve the constituting hybrid structure’s mechanical properties (e.g. tensile strength and stiffness). The overarching aim is to contribute towards the engineered design of novel functional materials based on nanocellulose that simultaneously improve crucial physical properties pertaining to thermal transport and mechanics.more » « less
- 
            Abstract Boron nitride nanotubes (BNNT) uniformly dispersed in stretchable materials, such as poly(dimethylsiloxane) (PDMS), could create the next generation of composites with augmented mechanical, thermal, and piezoelectric characteristics. This work reports tunable piezoelectricity of multifunctional BNNT/PDMS stretchable composites prepared via co‐solvent blending with tetrahydrofuran (THF) to disperse BNNTs in PDMS while avoiding sonication or functionalization. The resultant stretchable BNNT/PDMS composites demonstrate augmented Young's modulus (200% increase at 9 wt% BNNT) and thermal conductivity (120% increase at 9 wt% BNNT) without losing stretchability. Furthermore, BNNT/PDMS composites demonstrate piezoelectric responses that are linearly proportional to BNNT wt%, achieving a piezoelectric constant (|d33|) of 18 pmV−1at 9 wt% BNNT without poling, which is competitive with commercial piezoelectric polymers. Uniquely, BNNT/PDMS accommodates tensile strains up to 60% without plastic deformation by aligning BNNTs, which enhances the composites’ piezoelectric response approximately five times. Finally, the combined stretchable and piezoelectric nature of the composite was exploited to produce a vibration sensor sensitive to low‐frequency (≈1 kHz) excitation. This is the first demonstration of multifunctional, stretchable BNNT/PDMS composites with enhanced mechanical strength and thermal conductivity and furthermore tunable piezoelectric response by varying BNNT wt% and applied strain, permitting applications in soft actuators and vibration sensors.more » « less
- 
            Effectively translating the promising properties of boron nitride nanotubes (BNNTs) into macroscopic assemblies has vast potential for applications, such as thermal management materials and protective fabrics against hazardous environment. We spun fibers from aqueous dispersions of BNNTs in polyvinyl alcohol (PVA) solutions by a wet spinning method. Our results demonstrate that BNNTs/PVA fibers exhibit enhanced mechanical properties, which are affected by the nanotube and PVA concentrations, and the coagulation solvent utilized. Compared to the neat PVA fibers, we obtained roughly 4.3-, 12.7-, and 1.5-fold increases in the tensile strength, Young's modulus, and toughness, respectively, for the highest performing BNNTs/PVA fibers produced from dispersions containing as low as 0.1 mass% of nanotube concentration. Among the coagulation solvents tested, we found that solvents with higher polarity such as methanol and ethanol generally produced fibers with improved mechanical properties, where the fiber toughness shows a strong correlation with solvent polarity. These findings provide insights into assembling BNNTs-based fibers with improved mechanical properties for developing unique applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
