skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Jamming a terahertz wireless link

As the demand for bandwidth in wireless communication increases, carrier frequencies will reach the terahertz (THz) regime. One of the common preconceived notions is that, at these high frequencies, signals can radiate with high directivity which inherently provides more secure channels. Here, we describe the first study of the vulnerability of these directional links to jamming, in which we identify several features that are distinct from the usual considerations of jamming at low frequencies. We show that the receiver’s use of an envelope detector provides the jammer with the ability to thwart active attempts to adapt to their attack. In addition, a jammer can exploit the broadband nature of typical receivers to implement a beat jamming attack, which allows them to optimize the efficacy of the interference even if their broadcast is detuned from the frequency of the intended link. Our work quantifies the increasing susceptibility of broadband receivers to jamming, revealing previously unidentified vulnerabilities which must be considered in the development of future wireless systems operating above 100 GHz.

more » « less
Award ID(s):
1954780 1923733 1923782
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data files were used in support of the research paper titled "“Experimentation Framework for Wireless
    Communication Systems under Jamming Scenarios" which has been submitted to the IET Cyber-Physical Systems: Theory & Applications journal. 

    Authors: Marko Jacovic, Michael J. Liston, Vasil Pano, Geoffrey Mainland, Kapil R. Dandekar


    Top-level directories correspond to the case studies discussed in the paper. Each includes the sub-directories: logs, parsers, rayTracingEmulation, results. 


    logs:    - data logs collected from devices under test
        - 'defenseInfrastucture' contains console output from a WARP 802.11 reference design network. Filename structure follows '*x*dB_*y*.txt' in which *x* is the reactive jamming power level and *y* is the jaming duration in samples (100k samples = 1 ms). 'noJammer.txt' does not include the jammer and is a base-line case. 'outMedian.txt' contains the median statistics for log files collected prior to the inclusion of the calculation in the processing script. 
        - 'uavCommunication' contains MGEN logs at each receiver for cases using omni-directional and RALA antennas with a 10 dB constant jammer and without the jammer. Omni-directional folder contains multiple repeated experiments to provide reliable results during each calculation window. RALA directories use s*N* folders in which *N* represents each antenna state. 
        - 'vehicularTechnologies' contains MGEN logs at the car receiver for different scenarios. 'rxNj_5rep.drc' does not consider jammers present, 'rx33J_5rep.drc' introduces the periodic jammer, in 'rx33jSched_5rep.drc' the device under test uses time scheduling around the periodic jammer, in 'rx33JSchedRandom_5rep.drc' the same modified time schedule is used with a random jammer. 


    parsers:    - scripts used to collect or process the log files used in the study
            - 'defenseInfrastructure' contains the '' script which is used to control and log the throughput of a 5-node WARP 802.11 reference design network. Log files are manually inspected to generate results (end of log file provides a summary). 
            - 'uavCommunication' contains a 'readMe.txt' file which describes the parsing of the MGEN logs using TRPR. TRPR must be installed to run the scripts and directory locations must be updated. 
            - 'vehicularTechnologies' contains the '' script and supporting 'bfb.json' configuration file which also require TRPR to be installed and directories to be updated. 


    rayTracingEmulation:    - 'wirelessInsiteImages': images of model used in Wireless Insite
                - 'channelSummary.pdf': summary of channel statistics from ray-tracing study
                - 'rawScenario': scenario files resulting from code base directly from ray-tracing output based on configuration defined by '*WI.json' file 
                - 'processedScenario': pre-processed scenario file to be used by DYSE channel emulator based on configuration defined by '*DYSE.json' file, applies fixed attenuation measured externally by spectrum analyzer and additional transmit power per node if desired
                - DYSE scenario file format: time stamp (milli seconds), receiver ID, transmitter ID, main path gain (dB), main path phase (radians), main path delay (micro seconds), Doppler shift (Hz), multipath 1 gain (dB), multipath 1 phase (radians), multipath 1 delay relative to main path delay (micro seconds), multipath 2 gain (dB), multipath 2 phase (radians), multipath 2 delay relative to main path delay (micro seconds)
                - 'nodeMapping.txt': mapping of Wireless Insite transceivers to DYSE channel emulator physical connections required
                - 'uavCommunication' directory additionally includes 'antennaPattern' which contains the RALA pattern data for the omni-directional mode ('omni.csv') and directional state ('90.csv')


    results:    - contains performance results used in paper based on parsing of aforementioned log files

    more » « less
  2. Wireless systems must be resilient to jamming attacks. Existing mitigation methods based on multi-antenna processing require knowledge of the jammer's transmit characteristics that may be difficult to acquire, especially for smart jammers that evade mitigation by transmitting only at specific instants. We propose a novel method to mitigate smart jamming attacks on the massive multi-user multiple-input multiple-output (MU-MIMO) uplink which does not require the jammer to be active at any specific instant. By formulating an optimization problem that unifies jammer estimation and mitigation, channel estimation, and data detection, we exploit that a jammer cannot change its subspace within a coherence interval. Theoretical results for our problem formulation show that its solution is guaranteed to recover the users' data symbols under certain conditions. We develop two efficient iterative algorithms for approximately solving the proposed problem formulation: MAED, a parameter-free algorithm which uses forward-backward splitting with a box symbol prior, and SO-MAED, which replaces the prior of MAED with soft-output symbol estimates that exploit the discrete transmit constellation and which uses deep unfolding to optimize algorithm parameters. We use simulations to demonstrate that the proposed algorithms effectively mitigate a wide range of smart jammers without a priori knowledge about the attack type. 
    more » « less
  3. Wireless systems must be resilient to jamming attacks. Existing mitigation methods require knowledge of the jammer’s transmit characteristics. However, this knowledge may be difficult to acquire, especially for smart jammers that attack only specific instants during transmission in order to evade mitigation. We propose a novel method that mitigates attacks by smart jammers on massive multi-user multiple-input multiple-output (MU-MIMO) basestations (BSs). Our approach builds on recent progress in joint channel estimation and data detection (JED) and exploits the fact that a jammer cannot change its subspace within a coherence interval. Our method, called MAED (short for MitigAtion, Estimation, and Detection), uses a novel problem formulation that combines jammer estimation and mitigation, channel estimation, and data detection, instead of separating these tasks. We solve the problem approximately with an efficient iterative algorithm. Our simulation results show that MAED effectively mitigates a wide range of smart jamming attacks without having any a priori knowledge about the attack type. 
    more » « less
  4. Data files were used in support of the research paper titled “Mitigating RF Jamming Attacks at the Physical Layer with Machine Learning" which has been submitted to the IET Communications journal.


    All data was collected using the SDR implementation shown here: Particularly for antenna state selection, the files developed for this paper are located in 'dragonradio/scripts/:'

    • '': class used to defined the antenna state selection algorithm
    • '': SDR implementation for normal radio operation with reconfigurable antenna
    • '': SDR implementation for hyperparameter tunning
    • '': SDR implementation for omnidirectional mode only


    Authors: Marko Jacovic, Xaime Rivas Rey, Geoffrey Mainland, Kapil R. Dandekar


    Top-level directories and content will be described below. Detailed descriptions of experiments performed are provided in the paper.


    classifier_training: files used for training classifiers that are integrated into SDR platform

    • 'logs-8-18' directory contains OTA SDR collected log files for each jammer type and under normal operation (including congested and weaklink states)
    • '' is the main parser for training the classifiers
    • 'trainedClassifiers' contains the output classifiers generated by ''

    post_processing_classifier: contains logs of online classifier outputs and processing script

    • 'class' directory contains .csv logs of each RTE and OTA experiment for each jamming and operation scenario
    • '' parses the log files and provides classification report and confusion matrix for each multi-class and binary classifiers for each observed scenario - found in 'results->classifier_performance'

    post_processing_mgen: contains MGEN receiver logs and parser

    • 'configs' contains JSON files to be used with parser for each experiment
    • 'mgenLogs' contains MGEN receiver logs for each OTA and RTE experiment described. Within each experiment logs are separated by 'mit' for mitigation used, 'nj' for no jammer, and 'noMit' for no mitigation technique used. File names take the form *_cj_* for constant jammer, *_pj_* for periodic jammer, *_rj_* for reactive jammer, and *_nj_* for no jammer. Performance figures are found in 'results->mitigation_performance'

    ray_tracing_emulation: contains files related to Drexel area, Art Museum, and UAV Drexel area validation RTE studies.

    • Directory contains detailed 'readme.txt' for understanding.
    • Please note: the processing files and data logs present in 'validation' folder were developed by Wolfe et al. and should be cited as such, unless explicitly stated differently. 
      • S. Wolfe, S. Begashaw, Y. Liu and K. R. Dandekar, "Adaptive Link Optimization for 802.11 UAV Uplink Using a Reconfigurable Antenna," MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM), 2018, pp. 1-6, doi: 10.1109/MILCOM.2018.8599696.

    results: contains results obtained from study

    • 'classifier_performance' contains .txt files summarizing binary and multi-class performance of online SDR system. Files obtained using 'post_processing_classifier.'
    • 'mitigation_performance' contains figures generated by 'post_processing_mgen.'
    • 'validation' contains RTE and OTA performance comparison obtained by 'ray_tracing_emulation->validation->matlab->outdoor_hover_plots.m'

    tuning_parameter_study: contains the OTA log files for antenna state selection hyperparameter study

    • 'dataCollect' contains a folder for each jammer considered in the study, and inside each folder there is a CSV file corresponding to a different configuration of the learning parameters of the reconfigurable antenna. The configuration selected was the one that performed the best across all these experiments and is described in the paper.
    • 'data_summary.txt'this file contains the summaries from all the CSV files for convenience.
    more » « less
  5. Of the many challenges in building a wireless network at terahertz frequencies, link discovery remains one of the most critical and least explored. In a network of mobile receivers using narrow directional beams, how do the nodes rapidly locate each other? This direction information is crucial for beam forming and steering, which are fundamental operations for maintaining link quality. As the carrier frequency increases into the terahertz range, the conventional methods used by existing networks become prohibitively time-consuming, so an alternative strategy is required. Using a leaky-wave antenna with a broadband transmitter, we demonstrate a single-shot approach for link discovery which can be accomplished much more rapidly. Our method relies on measurements of the width of a broad spectrum, and does not require any information about the phase of the received signal. This protocol, which relies on a detailed understanding of the radiation from leaky-wave devices, offers a realistic approach for enabling mobility in directional networks. 
    more » « less