skip to main content


Title: Thermal control of the topological edge flow in nonlinear photonic lattices
Abstract

The chaotic evolution resulting from the interplay between topology and nonlinearity in photonic systems generally forbids the sustainability of optical currents. Here, we systematically explore the nonlinear evolution dynamics in topological photonic lattices within the framework of optical thermodynamics. By considering an archetypical two-dimensional Haldane photonic lattice, we discover several prethermal states beyond the topological phase transition point and a stable global equilibrium response, associated with a specific optical temperature and chemical potential. Along these lines, we provide a consistent thermodynamic methodology for both controlling and maximizing the unidirectional power flow in the topological edge states. This can be achieved by either employing cross-phase interactions between two subsystems or by exploiting self-heating effects in disordered or Floquet topological lattices. Our results indicate that photonic topological systems can in fact support robust photon transport processes even under the extreme complexity introduced by nonlinearity, an important feature for contemporary topological applications in photonics.

 
more » « less
Award ID(s):
1711230
NSF-PAR ID:
10381721
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Stemming from bound states in the continuum (BICs), momentum‐space polarization vortices observed in photonic structures provide an attractive approach to generating optical vortex (OV) beams. On the other hand, dominated by the selection rules, the harmonic generation from nanostructures exhibits a nonlinear geometric phase that depends on both the harmonic orders and the handedness of circularly polarized harmonic signals. Here, the third‐ and fifth‐harmonic optical vortex generation from an amorphous silicon photonic crystal slab, supporting the guided resonance associated with BICs at near infrared wavelengths, is numerically demonstrated. The results show that, determined by the nonlinearity phase, the topological charge (l) associated with thenth‐harmonic OV beams follows σ(n∓1)q, whereqis the polarization charge of the BIC and the ∓ sign represents the opposite or same polarization of thenth‐harmonic signal relative to the circular polarization state (σ) of the fundamental waves. Exploiting harmonic multiplexing, this approach can significantly improve the channel capacity of OV generators based on topologically protected optical BICs.

     
    more » « less
  2. Abstract

    Strong coupling between electronic excitations in materials and photon modes results in the formation of polaritons, which display larger nonlinearities than their photonic counterparts due to their material component. We theoretically investigate how to optically control the topological properties of molecular and solid-state exciton–polariton systems by exploiting one such nonlinearity: saturation of electronic transitions. We demonstrate modification of the Berry curvature of three different materials when placed within a Fabry–Perot cavity and pumped with circularly polarized light, illustrating the broad applicability of our scheme. Importantly, while optical pumping leads to nonzero Chern invariants, unidirectional edge states do not emerge in our system as the bulk-boundary correspondence is not applicable. This work demonstrates a versatile approach to control topological properties of novel optoelectronic materials.

     
    more » « less
  3. Abstract

    Topological photonic systems offer light transport that is robust against defects and disorder, promising a new generation of chip‐scale photonic devices and facilitating energy‐efficient on‐chip information routing and processing. However, present quasi one dimensional (1D) designs, such as the Su–Schrieffer–Heeger and Rice–Mele models, support only a limited number of nontrivial phases due to restrictions on dispersion band engineering. Here, a flexible topological photonic lattice on a silicon photonic platform is experimentally demonstrated that realizes multiple topologically nontrivial dispersion bands. By suitably setting the couplings between the 1D waveguides, different lattices can exhibit the transition between multiple different topological phases and allow the independent realization of the corresponding edge states. Heterodyne measurements clearly reveal the ultrafast transport dynamics of the edge states in different phases at a femtosecond scale, validating the designed topological features. The study equips topological models with enriched edge dynamics and considerably expands the scope to engineer unique topological features into photonic, acoustic, and atomic systems.

     
    more » « less
  4. Liquid crystals are complex fluids that allow exquisite control of light propagation thanks to their orientational order and optical anisotropy. Inspired by recent advances in liquid-crystal photo-patterning technology, we propose a soft-matter platform for assembling topological photonic materials that holds promise for protected unidirectional waveguides, sensors, and lasers. Crucial to our approach is to use spatial variations in the orientation of the nematic liquid-crystal molecules to emulate the time modulations needed in a so-called Floquet topological insulator. The varying orientation of the nematic director introduces a geometric phase that rotates the local optical axes. In conjunction with suitably designed structural properties, this geometric phase leads to the creation of topologically protected states of light. We propose and analyze in detail soft photonic realizations of two iconic topological systems: a Su–Schrieffer–Heeger chain and a Chern insulator. The use of soft building blocks potentially allows for reconfigurable systems that exploit the interplay between topological states of light and the underlying responsive medium.

     
    more » « less
  5. Abstract The lattice symmetry of a crystal is one of the most important factors in determining its physical properties. Particularly, low-symmetry crystals offer powerful opportunities to control light propagation, polarization and phase 1–4 . Materials featuring extreme optical anisotropy can support a hyperbolic response, enabling coupled light–matter interactions, also known as polaritons, with highly directional propagation and compression of light to deeply sub-wavelength scales 5 . Here we show that monoclinic crystals can support hyperbolic shear polaritons, a new polariton class arising in the mid-infrared to far-infrared due to shear phenomena in the dielectric response. This feature emerges in materials in which the dielectric tensor cannot be diagonalized, that is, in low-symmetry monoclinic and triclinic crystals in which several oscillators with non-orthogonal relative orientations contribute to the optical response 6,7 . Hyperbolic shear polaritons complement previous observations of hyperbolic phonon polaritons in orthorhombic 1,3,4 and hexagonal 8,9 crystal systems, unveiling new features, such as the continuous evolution of their propagation direction with frequency, tilted wavefronts and asymmetric responses. The interplay between diagonal loss and off-diagonal shear phenomena in the dielectric response of these materials has implications for new forms of non-Hermitian and topological photonic states. We anticipate that our results will motivate new directions for polariton physics in low-symmetry materials, which include geological minerals 10 , many common oxides 11 and organic crystals 12 , greatly expanding the material base and extending design opportunities for compact photonic devices. 
    more » « less