skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Molecular and solid-state topological polaritons induced by population imbalance
Abstract Strong coupling between electronic excitations in materials and photon modes results in the formation of polaritons, which display larger nonlinearities than their photonic counterparts due to their material component. We theoretically investigate how to optically control the topological properties of molecular and solid-state exciton–polariton systems by exploiting one such nonlinearity: saturation of electronic transitions. We demonstrate modification of the Berry curvature of three different materials when placed within a Fabry–Perot cavity and pumped with circularly polarized light, illustrating the broad applicability of our scheme. Importantly, while optical pumping leads to nonzero Chern invariants, unidirectional edge states do not emerge in our system as the bulk-boundary correspondence is not applicable. This work demonstrates a versatile approach to control topological properties of novel optoelectronic materials.  more » « less
Award ID(s):
1654732
PAR ID:
10488599
Author(s) / Creator(s):
; ;
Publisher / Repository:
de Gruyter
Date Published:
Journal Name:
Nanophotonics
Volume:
12
Issue:
15
ISSN:
2192-8614
Page Range / eLocation ID:
3109 to 3119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Manipulating the topological properties of spin textures in magnetic materials is of great interest due to the rich physics and promising technological applications of these materials in advanced electronic devices. A spin texture with desired topological properties can be created by magnetic monopole injection, resulting in topological transitions involving changes in the topological charge. Therefore, controlling magnetic monopole injection has paramount importance for obtaining the desired spin textures but has not yet been reported. Here, we report the use of reliably manipulated magnetic monopole injection in the topological transition from stripe domains to skyrmions in an Fe/Gd multilayer. An easily tunable in-plane magnetic field applied to an Fe/Gd multilayer plays a key role in the magnetic monopole injection by modulating the local exchange energy. Our findings facilitate the efficient management of topological transitions by providing an important method for controlling magnetic monopole injection. 
    more » « less
  2. Abstract The fine-tuning of topologically protected states in quantum materials holds great promise for novel electronic devices. However, there are limited methods that allow for the controlled and efficient modulation of the crystal lattice while simultaneously monitoring the changes in the electronic structure within a single sample. Here, we apply significant and controllable strain to high-quality HfTe5samples and perform electrical transport measurements to reveal the topological phase transition from a weak topological insulator phase to a strong topological insulator phase. After applying high strain to HfTe5and converting it into a strong topological insulator, we found that the resistivity of the sample increased by 190,500% and that the electronic transport was dominated by the topological surface states at cryogenic temperatures. Our results demonstrate the suitability of HfTe5as a material for engineering topological properties, with the potential to generalize this approach to study topological phase transitions in van der Waals materials and heterostructures. 
    more » « less
  3. Abstract 2D topological insulators promise novel approaches towards electronic, spintronic, and quantum device applications. This is owing to unique features of their electronic band structure, in which bulk-boundary correspondences enforces the existence of 1D spin–momentum locked metallic edge states—both helical and chiral—surrounding an electrically insulating bulk. Forty years since the first discoveries of topological phases in condensed matter, the abstract concept of band topology has sprung into realization with several materials now available in which sizable bulk energy gaps—up to a few hundred meV—promise to enable topology for applications even at room-temperature. Further, the possibility of combining 2D TIs in heterostructures with functional materials such as multiferroics, ferromagnets, and superconductors, vastly extends the range of applicability beyond their intrinsic properties. While 2D TIs remain a unique testbed for questions of fundamental condensed matter physics, proposals seek to control the topologically protected bulk or boundary states electrically, or even induce topological phase transitions to engender switching functionality. Induction of superconducting pairing in 2D TIs strives to realize non-Abelian quasiparticles, promising avenues towards fault-tolerant topological quantum computing. This roadmap aims to present a status update of the field, reviewing recent advances and remaining challenges in theoretical understanding, materials synthesis, physical characterization and, ultimately, device perspectives. 
    more » « less
  4. Abstract Kagome lattice magnets are an interesting class of materials as they can host topological properties in their magnetic and electronic structures. YMn6Sn6is one such compound in which various exotic magnetic and electronic topological properties have been realized. Here, by means of a partial substitution of Sn with an isovalent and slightly smaller atom Ge, we demonstrate the sensitivity of such chemical substitution on the magnetic structure and its influence in the electronic properties. Magnetic structure of YMn6Sn4Ge2determined by neutron diffraction reveals an incommensurate staggered magnetic spiral with a slightly larger spiral pitch than in YMn6Sn6. This change in magnetic structure influences the Fermi surface enhancing the out-of-plane conductivity. Such a sensitivity to the partial chemical substitution provides a great potential for engineering the magnetic phases and associated electronic properties not only in YMn6Sn6, but also in the large family of 166 rare-earth kagome magnet. 
    more » « less
  5. Abstract This study presents a thorough analysis of the electronic structures of the TaPxAs1−xseries of compounds, which are of significant interest due to their potential as topological materials. Using a combination of first principles and Wannier‐based tight‐binding methods, this study investigates both the bulk and surface electronic structures of the compounds for varying compositions (x = 0, 0.25, 0.50, 0.75, 1), with a focus on their topological properties. By using chirality analysis, (111) surface electronic structure analysis, and surface Fermi arcs analysis, it is established that the TaPxAs1−xcompounds exhibit topologically nontrivial behavior, characterized as Weyl semimetals (WSMs). The effect of spin–orbit coupling (SOC) on the topological properties of the compounds is further studied. In the absence of SOC, the compounds exhibit linearly dispersive fourfold degenerate points in the first Brillouin zone (FBZ) resembling Dirac semimetals. However, the introduction of SOC induces a phase transition to WSM states, with the number and position of Weyl points (WPs) varying depending on the composition of the alloy. For example, TaP has 12 WPs in the FBZ. The findings provide novel insights into the electronic properties of TaPxAs1−xcompounds and their potential implications for the development of topological materials for various technological applications. 
    more » « less