The exploitation of Brillouin scattering, the scattering of light by sound, has led to demonstrations of a broad spectrum of novel physical phenomena and device functionalities for practical applications. Compared with optomechanical excitation by optical forces, electromechanical excitation of acoustic waves with transducers on a piezoelectric material features intense acoustic waves sufficient to achieve near-unity scattering efficiency within a compact device footprint, which is essential for practical applications. Recently, it has been demonstrated that gigahertz acoustic waves can be electromechanically excited to scatter guided optical waves in integrated photonic waveguides and cavities, leading to intriguing phenomena such as induced transparency and nonreciprocal mode conversion, and advanced optical functionalities. The new integrated electromechanical Brillouin devices, utilizing state-of-the-art nanofabrication capabilities and piezoelectric thin film materials, succeed guided wave acousto-optics with unprecedented device integration, ultrahigh frequency, and strong light-sound interaction. Here, we experimentally demonstrate large-angle (60°) acousto-optic beam deflection of guided telecom-band light in a planar photonics device with electromechanically excited gigahertz (∼11 GHz) acoustic Lamb waves. The device consists of integrated transducers, waveguides, and lenses, all fabricated on a 330 nm thick suspended aluminum nitride membrane. In contrast, conventional guided-wave acousto-optic devices can only achieve a deflection angle of a few degrees at most. Our work shows the promises of such a new acousto-optic device platform, which may lead to potential applications in on-chip beam steering and routing, optical spectrum analysis, high-frequency acousto-optic modulators, RF or microwave filters and delay lines, as well as nonreciprocal optical devices such as optical isolators.
more »
« less
Beam steering at the nanosecond time scale with an atomically thin reflector
Abstract Techniques to mold the flow of light on subwavelength scales enable fundamentally new optical systems and device applications. The realization of programmable, active optical systems with fast, tunable components is among the outstanding challenges in the field. Here, we experimentally demonstrate a few-pixel beam steering device based on electrostatic gate control of excitons in an atomically thin semiconductor with strong light-matter interactions. By combining the high reflectivity of a MoSe2monolayer with a graphene split-gate geometry, we shape the wavefront phase profile to achieve continuously tunable beam deflection with a range of 10°, two-dimensional beam steering, and switching times down to 1.6 nanoseconds. Our approach opens the door for a new class of atomically thin optical systems, such as rapidly switchable beam arrays and quantum metasurfaces operating at their fundamental thickness limit.
more »
« less
- Award ID(s):
- 2012023
- PAR ID:
- 10381727
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Optical metasurfaces with subwavelength thickness hold considerable promise for future advances in fundamental optics and novel optical applications due to their unprecedented ability to control the phase, amplitude, and polarization of transmitted, reflected, and diffracted light. Introducing active functionalities to optical metasurfaces is an essential step to the development of next-generation flat optical components and devices. During the last few years, many attempts have been made to develop tunable optical metasurfaces with dynamic control of optical properties (e.g., amplitude, phase, polarization, spatial/spectral/temporal responses) and early-stage device functions (e.g., beam steering, tunable focusing, tunable color filters/absorber, dynamic hologram, etc) based on a variety of novel active materials and tunable mechanisms. These recently-developed active metasurfaces show significant promise for practical applications, but significant challenges still remain. In this review, a comprehensive overview of recently-reported tunable metasurfaces is provided which focuses on the ten major tunable metasurface mechanisms. For each type of mechanism, the performance metrics on the reported tunable metasurface are outlined, and the capabilities/limitations of each mechanism and its potential for various photonic applications are compared and summarized. This review concludes with discussion of several prospective applications, emerging technologies, and research directions based on the use of tunable optical metasurfaces. We anticipate significant new advances when the tunable mechanisms are further developed in the coming years.more » « less
-
We demonstrate a two-dimensional, individually tunable electrowetting microlens array fabricated using standard microfabrication techniques. Each lens in our array has a large range of focal tunability from −1.7 mm to −∞ in the diverging regime, which we verify experimentally from 0 to 75 V for a device coated in Parylene C. Additionally, each lens can be actuated to within 1% of their steady-state value within 1.5 ms. To justify the use of our device in a phase-sensitive optical system, we measure the wavefront of a beam passing through the center of a single lens in our device over the actuation range and show that these devices have a surface quality comparable to static microlens arrays. The large range of tunability, fast response time, and excellent surface quality of these devices open the door to potential applications in compact optical imaging systems, transmissive wavefront shaping, and beam steering.more » « less
-
Integrated optical phased arrays (OPAs) have enabled cutting-edge applications where optical beam steering can benefit from chip-scale integration. However, the majority of integrated OPA demonstrations to date have been limited to showing far-field beam forming and steering. There are, however, many emerging applications of integrated photonics where emission of focused light from a chip is desirable, such as in integrated optical tweezers for biophotonics, chip-based 3D printers, and trapped-ion quantum systems. To address this need, we have recently demonstrated the first near-field-focusing integrated OPAs; however, this preliminary demonstration was limited to emission at only one focal plane above the chip. In this paper, we show the first, to the best of our knowledge, spiral integrated OPAs, enabling emission of focusing beams with tunable variable focal heights for the first time. In the process, we develop the theory, explore the design parameters, and propose feed-structure architectures for such OPAs. Finally, we experimentally demonstrate an example spiral integrated OPA system fabricated in a standard silicon-photonics process, showing wavelength-tunable variable-focal-height focusing emission. This work introduces a first-of-its-kind integrated OPA architecture not previously explored or demonstrated in literature and, as such, enables new functionality for emerging applications of OPAs that require focusing operation.more » « less
-
Abstract Metasurfaces offer complete control of optical wavefront at the subwavelength scale, advancing a new class of artificial planar optics, including lenses, waveplates, and holograms, with unprecedented merits over conventional optical components. In particular, the ultrathin, flat, and compact characteristics of metasurfaces facilitate their integration with semiconductor devices for the development of miniaturized and multifunctional optoelectronic systems. In this work, generation of structured light is implemented at an ultracompact wafer‐level through the monolithic integration of metasurface with standard vertical cavity surface‐emitting lasers (VCSELs). This work opens new perspectives for the design of structured light systems with compactness, lightweight, and scalability. Ultracompact beam structured laser chips with versatile functionalities are experimentally demonstrated, including multichannel beams array generation, on‐chip large‐angle beam steering up to 60°, and wafer‐level holographic beam shaping with a wide field of view (about 124°). The results will promote the development of compact light structuring systems with great potential in 3D imaging, displays, robotic vision, human–computer interaction, and augmented/virtual reality.more » « less
An official website of the United States government
