skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electromechanical Brillouin scattering in integrated planar photonics
The exploitation of Brillouin scattering, the scattering of light by sound, has led to demonstrations of a broad spectrum of novel physical phenomena and device functionalities for practical applications. Compared with optomechanical excitation by optical forces, electromechanical excitation of acoustic waves with transducers on a piezoelectric material features intense acoustic waves sufficient to achieve near-unity scattering efficiency within a compact device footprint, which is essential for practical applications. Recently, it has been demonstrated that gigahertz acoustic waves can be electromechanically excited to scatter guided optical waves in integrated photonic waveguides and cavities, leading to intriguing phenomena such as induced transparency and nonreciprocal mode conversion, and advanced optical functionalities. The new integrated electromechanical Brillouin devices, utilizing state-of-the-art nanofabrication capabilities and piezoelectric thin film materials, succeed guided wave acousto-optics with unprecedented device integration, ultrahigh frequency, and strong light-sound interaction. Here, we experimentally demonstrate large-angle (60°) acousto-optic beam deflection of guided telecom-band light in a planar photonics device with electromechanically excited gigahertz (∼11 GHz) acoustic Lamb waves. The device consists of integrated transducers, waveguides, and lenses, all fabricated on a 330 nm thick suspended aluminum nitride membrane. In contrast, conventional guided-wave acousto-optic devices can only achieve a deflection angle of a few degrees at most. Our work shows the promises of such a new acousto-optic device platform, which may lead to potential applications in on-chip beam steering and routing, optical spectrum analysis, high-frequency acousto-optic modulators, RF or microwave filters and delay lines, as well as nonreciprocal optical devices such as optical isolators.  more » « less
Award ID(s):
1641109 1741656
PAR ID:
10594443
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Photonics
Volume:
4
Issue:
8
ISSN:
2378-0967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrically driven acousto-optic devices that provide beam deflection and optical frequency shifting have broad applications from pulse synthesis to heterodyne detection. Commercially available acousto-optic modulators are based on bulk materials and consume Watts of radio frequency power. Here, we demonstrate an integrated 3-GHz acousto-optic frequency shifter on thin-film lithium niobate, featuring a carrier suppression over 30 dB. Further, we demonstrate a gigahertz-spaced optical frequency comb featuring more than 200 lines over a 0.6-THz optical bandwidth by recirculating the light in an active frequency shifting loop. Our integrated acousto-optic platform leads to the development of on-chip optical routing, isolation, and microwave signal processing. 
    more » « less
  2. Since the advent of the laser, acousto-optic modulators have been an important tool for controlling light. Recent advances in on-chip lithium niobate waveguide technology present new opportunities for these devices. We demonstrate a collinear acousto-optic modulator in a suspended film of lithium niobate employing a high-confinement, wavelength-scale waveguide. By strongly confining the optical and mechanical waves, this modulator improves a figure-of-merit that accounts for both acousto-optic and electro-mechanical efficiency by orders of magnitude. Our device demonstration marks a significant technological advance in acousto-optics that promises a novel class of compact and low-power frequency shifters, tunable filters, non-magnetic isolators, and beam deflectors. 
    more » « less
  3. Abstract Realization of chip‐scale nonreciprocal optics such as isolators and circulators is highly demanding for all‐optical signal routing and protection with standard photonics foundry process. Owing to the significant challenge for incorporating magneto‐optical materials on chip, the exploration of magnetic‐free alternatives has become exceedingly imperative in integrated photonics. Here, a chip‐based, tunable all‐optical isolator at the telecommunication band is demonstrated, which is based upon bulk stimulated Brillouin scattering (SBS) in a high‐Q silica microtoroid resonator. This device exhibits remarkable characteristics over most state‐of‐the‐art implements, including high isolation ratio, no insertion loss, and large working power range. Thanks to the guided acoustic wave and accompanying momentum‐conservation condition, bulk SBS also assist in realizing the nonreciprocal parity‐time symmetry in two directly coupled microresonators. The breach of time‐reversal symmetry further makes the design a versatile arena for developing many formidable ultra‐compact devices such as unidirectional single‐mode Brillouin lasers and supersensitive photonic sensors. 
    more » « less
  4. We demonstrate the first acousto-optic modulators in lithium niobate films on sapphire, detailing the dependence of the piezoelectric and optomechanical coupling coefficients on the crystal orientation. This platform supports highly confined, strongly piezoelectric mechanical waves without suspensions, making it a promising candidate for broadband and efficient integrated acousto-optic devices, circuits, and systems. 
    more » « less
  5. BACKGROUND Electromagnetic (EM) waves underpin modern society in profound ways. They are used to carry information, enabling broadcast radio and television, mobile telecommunications, and ubiquitous access to data networks through Wi-Fi and form the backbone of our modern broadband internet through optical fibers. In fundamental physics, EM waves serve as an invaluable tool to probe objects from cosmic to atomic scales. For example, the Laser Interferometer Gravitational-Wave Observatory and atomic clocks, which are some of the most precise human-made instruments in the world, rely on EM waves to reach unprecedented accuracies. This has motivated decades of research to develop coherent EM sources over broad spectral ranges with impressive results: Frequencies in the range of tens of gigahertz (radio and microwave regimes) can readily be generated by electronic oscillators. Resonant tunneling diodes enable the generation of millimeter (mm) and terahertz (THz) waves, which span from tens of gigahertz to a few terahertz. At even higher frequencies, up to the petahertz level, which are usually defined as optical frequencies, coherent waves can be generated by solid-state and gas lasers. However, these approaches often suffer from narrow spectral bandwidths, because they usually rely on well-defined energy states of specific materials, which results in a rather limited spectral coverage. To overcome this limitation, nonlinear frequency-mixing strategies have been developed. These approaches shift the complexity from the EM source to nonresonant-based material effects. Particularly in the optical regime, a wealth of materials exist that support effects that are suitable for frequency mixing. Over the past two decades, the idea of manipulating these materials to form guiding structures (waveguides) has provided improvements in efficiency, miniaturization, and production scale and cost and has been widely implemented for diverse applications. ADVANCES Lithium niobate, a crystal that was first grown in 1949, is a particularly attractive photonic material for frequency mixing because of its favorable material properties. Bulk lithium niobate crystals and weakly confining waveguides have been used for decades for accessing different parts of the EM spectrum, from gigahertz to petahertz frequencies. Now, this material is experiencing renewed interest owing to the commercial availability of thin-film lithium niobate (TFLN). This integrated photonic material platform enables tight mode confinement, which results in frequency-mixing efficiency improvements by orders of magnitude while at the same time offering additional degrees of freedom for engineering the optical properties by using approaches such as dispersion engineering. Importantly, the large refractive index contrast of TFLN enables, for the first time, the realization of lithium niobate–based photonic integrated circuits on a wafer scale. OUTLOOK The broad spectral coverage, ultralow power requirements, and flexibilities of lithium niobate photonics in EM wave generation provides a large toolset to explore new device functionalities. Furthermore, the adoption of lithium niobate–integrated photonics in foundries is a promising approach to miniaturize essential bench-top optical systems using wafer scale production. Heterogeneous integration of active materials with lithium niobate has the potential to create integrated photonic circuits with rich functionalities. Applications such as high-speed communications, scalable quantum computing, artificial intelligence and neuromorphic computing, and compact optical clocks for satellites and precision sensing are expected to particularly benefit from these advances and provide a wealth of opportunities for commercial exploration. Also, bulk crystals and weakly confining waveguides in lithium niobate are expected to keep playing a crucial role in the near future because of their advantages in high-power and loss-sensitive quantum optics applications. As such, lithium niobate photonics holds great promise for unlocking the EM spectrum and reshaping information technologies for our society in the future. Lithium niobate spectral coverage. The EM spectral range and processes for generating EM frequencies when using lithium niobate (LN) for frequency mixing. AO, acousto-optic; AOM, acousto-optic modulation; χ (2) , second-order nonlinearity; χ (3) , third-order nonlinearity; EO, electro-optic; EOM, electro-optic modulation; HHG, high-harmonic generation; IR, infrared; OFC, optical frequency comb; OPO, optical paramedic oscillator; OR, optical rectification; SCG, supercontinuum generation; SHG, second-harmonic generation; UV, ultraviolet. 
    more » « less