skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing
Abstract CMOS-based computing systems that employ the von Neumann architecture are relatively limited when it comes to parallel data storage and processing. In contrast, the human brain is a living computational signal processing unit that operates with extreme parallelism and energy efficiency. Although numerous neuromorphic electronic devices have emerged in the last decade, most of them are rigid or contain materials that are toxic to biological systems. In this work, we report on biocompatible bilayer graphene-based artificial synaptic transistors (BLAST) capable of mimicking synaptic behavior. The BLAST devices leverage a dry ion-selective membrane, enabling long-term potentiation, with ~50 aJ/µm2switching energy efficiency, at least an order of magnitude lower than previous reports on two-dimensional material-based artificial synapses. The devices show unique metaplasticity, a useful feature for generalizable deep neural networks, and we demonstrate that metaplastic BLASTs outperform ideal linear synapses in classic image classification tasks. With switching energy well below the 1 fJ energy estimated per biological synapse, the proposed devices are powerful candidates for bio-interfaced online learning, bridging the gap between artificial and biological neural networks.  more » « less
Award ID(s):
1720595
PAR ID:
10381733
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Resistive switching is a promising technology for artificial synapses, the most critical component and building block of a neural network for brain-inspired neuromorphic computing. The artificial synapse is capable of emulating a signal process and memory functions of biological synapses. The artificial synapse fabricated by natural bioorganic materials is essential for developing soft, flexible, and biocompatible electronics and sustainable, biodegradable, and environmentally friendly neuromorphic systems. In this work, a natural biomaterial—honey based resistive switching device—was demonstrated to emulate some important functionalities of biological synapses, including synaptic potentiation and depression, short-term and long-term memory, spatial summation, and shunting inhibition. The results indicate the potential of honey based resistive switching for artificial synaptic devices in renewable neuromorphic systems and bioelectronics. 
    more » « less
  2. Neuromorphic computing has the great potential to enable faster and more energy‐efficient computing by overcoming the von Neumann bottleneck. However, most emerging nonvolatile memory (NVM)‐based artificial synapses suffer from insufficient precision, nonlinear synaptic weight update, high write voltage, and high switching latency. Moreover, the spatiotemporal dynamics, an important temporal component for cognitive computing in spiking neural networks (SNNs), are hard to generate with existing complementary metal–oxide–semiconductor (CMOS) devices or emerging NVM. Herein, a three‐terminal, LixWO3‐based electrochemical synapse (LiWES) is developed with low programming voltage (0.2 V), fast programming speed (500 ns), and high precision (1024 states) that is ideal for artificial neural networks applications. Time‐dependent synaptic functions such as paired‐pulse facilitation (PPF) and temporal filtering that are critical for SNNs are also demonstrated. In addition, by leveraging the spike‐encoded timing information extracted from the short‐term plasticity (STP) behavior in the LiWES, an SNNs model is built to benchmark the pattern classification performance of the LiWES, and the result indicates a large boost in classification performance (up to 128×), compared with those NO‐STP synapses. 
    more » « less
  3. Abstract Previous work that studied hexagonal boron nitride (h‐BN) memristor DC resistive‐switching characteristics is extended to include an experimental understanding of their dynamic behavior upon programming or synaptic weight update. The focus is on the temporal resistive switching response to driving stimulus (programming voltage pulses) effecting conductance updates during training in neural network crossbar implementations. Test arrays are fabricated at the wafer level, enabled by the transfer of CVD‐grown few‐layer (8 layer) or multi‐layer (18 layer) h‐BN films. A comprehensive study of their temporal response under various conditions–voltage pulse amplitude, edge rate (pulse rise/fall times), and temperature–provides new insights into the resistive switching process toward optimized devices and improvements in their implementation of artificial neural networks. The h‐BN memristors can achieve multi‐state operation through ultrafast pulsed switching (< 25 ns) with high energy efficiency (≈10 pJ pulse−1). 
    more » « less
  4. Natural organic materials such as protein and carbohydrates are abundant in nature, renewable, and biodegradable, desirable for the construction of artificial synaptic devices for emerging neuromorphic computing systems with energy efficient operation and environmentally friendly disposal. These artificial synaptic devices are based on memristors or transistors with the memristive layer or gate dielectric formed by natural organic materials. The fundamental requirement for these synaptic devices is the ability to mimic the memory and learning behaviors of biological synapses. This paper reviews the synaptic functions emulated by a variety of artificial synaptic devices based on natural organic materials and provides a useful guidance for testing and investigating more of such devices. 
    more » « less
  5. Neuromorphic computing is considered to have the potential to overcome the limitations of traditional von Neumann architecture due to its high efficiency, low energy consumption, and fault-tolerance. Hardware components that can emulate the synaptic plasticity of neurons, i.e. artificial synaptic devices, are required by neuromorphic systems. New devices have been examined for such components, such as phase-change artificial synapse, ferroelectric artificial synapse, and memristor synapses. Among them, memristor, a two-terminal metal-insulator-metal structure that are analogous to a biological synapse with presynaptic neuron (top electrode), postsynapticneuron (bottom electrode), and synaptic cleft (memristive film), is a promising device technology because of its tunable resistance, scalability, 3D integration compatibility, low power consumption, and relatively high speed. In contrary to inorganic materials such as metal oxides, natural organic materials have attracted interest to form the memristive layer because they are renewable, biodegradable, sustainable, biocompatible, and environmentally friendly. In this paper, honey solution embedded with carbon nanotubes (CNTs) was processed into the memristive layer by a low cost solution-based process, with synaptic plasticity of the final honey-CNT memristors characterized, including forget and relearn, spike-rate-dependent plasticity, spike-voltage-dependent plasticity, short-term to long-term memory transition, paired pulse facilitation, and spatial supra-linear summation behaviors. The successful emulation of these essential biological synaptic behaviors demonstrates the potential of honey-CNT memristors as a viable hardware component in neuromorphic computing systems. 
    more » « less