- Award ID(s):
- 1912484
- PAR ID:
- 10381761
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 380
- Issue:
- 2230
- ISSN:
- 1364-503X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
While the standard, six-parameter, spatially flat ΛCDM model has been highly successful, certain anomalies in the cosmic microwave background bring out a tension between this model and observations. The statistical significance of any one anomaly is small. However, taken together, the presence of two or more of them imply that according to standard inflationary theories we live in quite an exceptional Universe. We revisit the analysis of the PLANCK collaboration using loop quantum cosmology, where an unforeseen interplay between the ultraviolet and the infrared makes the primordial power spectrum scale dependent at very small k. Consequently, we are led to a somewhat different ΛCDM Universe in which anomalies associated with large scale power suppression and the lensing amplitude are both alleviated. The analysis also leads to new predictions for future observations. This article is addressed both to cosmology and loop quantum gravity communities, and we have attempted to make it self-contained.more » « less
-
A large number of models have been analyzed in loop quantum cosmology, using mainly minisuperspace constructions and perturbations. At the same time, general physics principles from effective field theory and covariance have often been ignored. A consistent introduction of these ingredients requires substantial modifications of existing scenarios. As a consequence, none of the broader claims made mainly by the Ashtekar school—such as the genericness of bounces with astonishingly semiclassical dynamics, robustness with respect to quantization ambiguities, the realization of covariance, and the relevance of certain technical results for potential observations—hold up to scrutiny. Several useful lessons for a sustainable version of quantum cosmology can be drawn from this evaluation.more » « less
-
null (Ed.)A bstract Measurements of electroweak precision observables at future electron-position colliders, such as the CEPC, FCC-ee, and ILC, will be sensitive to physics at multi-TeV scales. To achieve this sensitivity, precise predictions for the Standard Model expectations of these observables are needed, including corrections at the three- and four-loop level. In this article, results are presented for the calculation of a subset of three-loop mixed electroweak-QCD corrections, stemming from diagrams with a gluon exchange and two closed fermion loops. The numerical impact of these corrections is illustrated for a number of applications: the prediction of the W-boson mass from the Fermi constant, the effective weak mixing angle, and the partial and total widths of the Z boson. Two alternative renormalization schemes for the top-quark mass are considered, on-shell and $$ \overline{\mathrm{MS}} $$ MS ¯ .more » « less
-
null (Ed.)A bstract We perform a dedicated study of the $$ q\overline{q} $$ q q ¯ -initiated two-loop electroweak-QCD Drell-Yan scattering amplitude in dimensional regularization schemes for vanishing light quark and lepton masses. For the relative order α and α s one-loop Standard Model corrections, details of our comparison to the original literature are given. The infrared pole terms of the mixed two-loop amplitude are governed by a known generalization of the dipole formula and we show explicitly that exactly the same two-loop polarized hard scattering functions are obtained in both the standard ’t Hooft-Veltman-Breitenlohner-Maison γ 5 scheme and Kreimer’s anticommuting γ 5 scheme.more » « less
-
We continue our work on the study of spherically symmetric loop quantum gravity coupled to two spherically symmetric scalar fields, with one that acts as a clock. As a consequence of the presence of the latter, we can define a true Hamiltonian for the theory. In previous papers, we studied the theory for large values of the radial coordinate, i.e., far away from any black hole or star that may be present. This makes the calculations considerably more tractable. We have shown that in the asymptotic region, the theory admits a large family of quantum vacua for quantum matter fields coupled to quantum gravity, as is expected from the well-known results of quantum field theory on classical curved space-time. Here, we study perturbative corrections involving terms that we neglected in our previous work. Using the time-dependent perturbation theory, we show that the states that represent different possible vacua are essentially stable. This ensures that one recovers from a totally quantized gravitational theory coupled to matter the standard behavior of a matter quantum field theory plus low probability transitions due to gravity between particles that differ at most by a small amount of energy.