skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Moraines in the Austrian Alps record repeated phases of glacier stabilization through the Late Glacial and the Early Holocene
Abstract Climate is currently warming due to anthropogenic impact on the Earth’s atmosphere. To better understand the processes and feedbacks within the climate system that underlie this accelerating warming trend, it is useful to examine past periods of abrupt climate change that were driven by natural forcings. Glaciers provide an excellent natural laboratory for reconstructing the climate of the past as they respond sensitively to climate oscillations. Therefore, we study glacier systems and their behavior during the transition from colder to warmer climate phases, focusing on the period between 15 and 10 ka. Using a combination of geomorphological mapping and beryllium-10 surface exposure dating, we reconstruct ice extents in two glaciated valleys of the Silvretta Massif in the Austrian Alps. The mountain glacier record shows that general deglaciation after the Last Glacial Maximum (LGM) was repeatedly interrupted by glacier stabilization or readvance, perhaps during the Oldest Dryas to Bølling transition (landform age: 14.4 ± 1.0 ka) and certainly during the Younger Dryas (YD; 12.9–11.7 ka) and the Early Holocene (EH; 12–10 ka). The oldest landform age indicates a lateral ice margin that postdates the ‘Gschnitz’ stadial (ca. 17–16 ka) and predates the YD. It shows that local inner-alpine glaciers were more extensive until the onset of the Bølling warm phase (ca. 14.6 ka), or possibly even into the Bølling than during the subsequent YD. The second age group, ca. 80 m below the (pre-)Bølling ice margin, indicates glacier extents during the YD cold phase and captures the spatial and temporal fine structure of glacier retreat during this period. The ice surface lowered approximately 50–60 m through the YD, which is indicative of milder climate conditions at the end of the YD compared to its beginning. Finally, the third age group falls into a period of more substantial warming, the YD–EH transition, and shows discontinuous glacier retreat during the glacial to interglacial transition. The new geochronologies synthesized with pre-existing moraine records from the Silvretta Massif evidence multiple cold phases that punctuated the general post-LGM warming trend and illustrate the sensitive response of Silvretta glaciers to abrupt climate oscillations in the past.  more » « less
Award ID(s):
1853881
PAR ID:
10381789
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Waitt RB, Thackray GD (Ed.)
    Mountain glacier moraine sequences and their chronologies allow us to evaluate the timing and climate conditions that underpin changes in the equilibrium line altitudes (ELAs), which can provide valuable information on the paleoclimatology of understudied regions such as tropical East Africa. However, moraine sequences are inherently discontinuous, and the precise climate conditions that they represent can be ambiguous due to the sensitivity of mountain glaciers to temperature, precipitation, and other environmental variables. Here, we used a two-dimensional (2-D) iceflow and mass-balance model to simulate glacier extents and ELAs in the Rwenzori Mountains in East Africa over the past 31,000 yr (31 k.y.), including the Last Glacial Maximum (LGM), late glacial period, and the Holocene Epoch. We drove the glacier model with two independent, continuous temperature reconstructions to simulate possible glacier length changes through time. Model input paleoclimate values came from branched glycerol dialkyl glycerol tetraether (brGDGT) temperature reconstructions from alpine lakes on Mount Kenya for the last ~31 k.y., and precipitation reconstructions for the LGM came from various East African locations. We then compared the simulated fluctuations with the positions and ages (where known) of the Rwenzori moraines. The simulated glacier extents reached within 1.1 km of the dated LGM moraines in one valley (93% of the full LGM extent) when forced by the brGDGT temperature reconstructions (maximum cooling of 6.1 °C) and a decrease in precipitation (-10% than modern amounts). These simulations suggest that the Rwenzori glaciers required a cooling of at least 6.1 °C to reach the dated LGM moraines. Based on the model output, we predict an age of 12–11 ka for moraines located halfway between the LGM and modern glacier extents. We also predict ice-free conditions in the Rwenzori Mountains for most of the early to middle Holocene, followed by a late Holocene glacier readvance within the last 2000 yr. 
    more » « less
  2. Abstract. Glaciers preserve climate variations in their geologicaland geomorphological records, which makes them prime candidates for climatereconstructions. Investigating the glacier–climate system over the pastmillennia is particularly relevant first because the amplitude andfrequency of natural climate variability during the Holocene provides theclimatic context against which modern, human-induced climate change must beassessed. Second, the transition from the last glacial to the currentinterglacial promises important insights into the climate system duringwarming, which is of particular interest with respect to ongoing climatechange. Evidence of stable ice margin positions that record cooling during the past12 kyr are preserved in two glaciated valleys of the Silvretta Massif in theeastern European Alps, the Jamtal (JAM) and the Laraintal (LAR). We mappedand dated moraines in these catchments including historical ridges usingberyllium-10 surface exposure dating (10Be SED) techniques andcorrelate resulting moraine formation intervals with climate proxy recordsto evaluate the spatial and temporal scale of these cold phases. The newgeochronologies indicate the formation of moraines during the early Holocene (EH), ca. 11.0 ± 0.7 ka (n = 19). Boulder ages along historical moraines (n = 6) suggest at least two glacier advances during the Little Ice Age (LIA; ca. 1250–1850 CE) around 1300 CE and in the second half of the 18th century. An earlier advance to the same position may have occurredaround 500 CE. The Jamtal and Laraintal moraine chronologies provide evidence thatmillennial-scale EH warming was superimposed by centennial-scale cooling.The timing of EH moraine formation coincides with brief temperature dropsidentified in local and regional paleoproxy records, most prominently withthe Preboreal Oscillation (PBO) and is consistent with moraine depositionin other catchments in the European Alps and in the Arctic region. Thisconsistency points to cooling beyond the local scale and therefore aregional or even hemispheric climate driver. Freshwater input sourced fromthe Laurentide Ice Sheet (LIS), which changed circulation patterns in theNorth Atlantic, is a plausible explanation for EH cooling and moraineformation in the Nordic region and in Europe. 
    more » « less
  3. The Northwest Coast of North America stretches 4000 km from Bering Strait to Washington State. Here we review the history of glaciation, sea level, oceanography, and climate along the Northwest Coast and in the subarctic Pacific Ocean during the Last Glacial Maximum and deglaciation. The period of interest is Marine Isotope Stage 2 between ca. 29,000 calendar years ago (29 ka) and 11,700 calendar years ago (11.7 ka). The glacial history of the Northwest Coast involved multiple glacial systems responding independently to latitudinal variations in climate caused by changes in the North American ice sheets and in the tropical ocean-atmosphere system. Glaciers reached their maximum extents 1–5 kyrs later along the Northwest Coast than did large sectors of the Laurentide and Fennoscandian Ice Sheets. Local, Last Glacial Maxima were reached in a time-transgressive, north to south sequence between southwestern Alaska and Puget Sound. The history of relative sea level along the Northwest Coast during Marine Isotope Stage 2 was complex because of rapid isostatic adjustments by a thin lithosphere to these time-transgressive glacial fluctuations. Multiple lines of evidence suggest Bering Strait was first flooded by the sea after 11 ka and that it probably did not assume its present-day oceanographic functions until after 9 ka. The coldest intervals occurred during Heinrich Event 2 (ca. 26–23.5 ka), again between ca. 23 and 21.5 ka, and during Heinrich Event 1 (ca. 18–15 ka). During these times, mean annual sea surface temperatures cooled by 5o to 8o C in the Gulf of Alaska, and glacial equilibrium-line altitudes fell below present sea level in southern Alaska and along the Aleutian Island chain. Sea ice episodically expanded across the subarctic Pacific in winter. Oceanographic changes in the Gulf of Alaska tracked variations in the vigor of the Asian Summer Monsoon. The deglaciation of the Northwest Coast may have served as the trigger for global climate changes during deglaciation. Starting ca. 21 ka, marine-based glaciers there were increasingly destabilized by rising eustatic sea level and influxes of freshwater and heat associated with the rejuvenation of the Asian Summer Monsoon. Rapid retreat of marine-based glaciers began ca. 19 ka and released large numbers of ice bergs and vast amounts of freshwater into the Northeast Pacific. Resultant cooling of the North Pacific may have been teleconnected to the North Atlantic through the atmosphere, where it slowed Atlantic Meridional Overturning Circulation and initiated the global effects of Heinrich Event 1, ca. 18–15 ka. During the Younger Dryas, ca. 12.8–11.7 ka, mean annual sea surface temperatures were 4o to 6o C cooler than today in the Gulf of Alaska, and sea ice again expanded across the subarctic Pacific in winter. Conditions of extreme seasonality characterized by cold, dry winters and warm, steadily ameliorating summers caused by the southward diversion of the Aleutian Low in winter may explain the previously enigmatic records of Younger Dryas climate along the Northwest Coast. 
    more » « less
  4. Abstract. Over the last century, northwestern Canada experienced some of the highest rates of tropospheric warming globally, which caused glaciers in the region to rapidly retreat. Our study seeks to extend the record of glacier fluctuations and assess climate drivers prior to the instrumental record in the Mackenzie and Selwyn mountains of northwestern Canada. We collected 27 10Be surface exposure ages across nine cirque and valley glacier moraines to constrain the timing of their emplacement. Cirque and valley glaciers in this region reached their greatest Holocene extents in the latter half of the Little Ice Age (1600–1850 CE). Four erratic boulders, 10–250 m distal from late Holocene moraines, yielded 10Be exposure ages of 10.9–11.6 ka, demonstrating that by ca. 11 ka, alpine glaciers were no more extensive than during the last several hundred years. Estimated temperature change obtained through reconstruction of equilibrium line altitudes shows that since ca. 1850 CE, mean annual temperatures have risen 0.2–2.3 ∘C. We use our glacier chronology and the Open Global Glacier Model (OGGM) to estimate that from 1000 CE, glaciers in this region reached a maximum total volume of 34–38 km3 between 1765 and 1855 CE and had lost nearly half their ice volume by 2019 CE. OGGM was unable to produce modeled glacier lengths that match the timing or magnitude of the maximum glacier extent indicated by the 10Be chronology. However, when applied to the entire Mackenzie and Selwyn mountain region, past millennium OGGM simulations using the Max Planck Institute Earth System Model (MPI-ESM) and the Community Climate System Model 4 (CCSM4) yield late Holocene glacier volume change temporally consistent with our moraine and remote sensing record, while the Meteorological Research Institute Earth System Model 2 (MRI-ESM2) and the Model for Interdisciplinary Research on Climate (MIROC) fail to produce modeled glacier change consistent with our glacier chronology. Finally, OGGM forced by future climate projections under varying greenhouse gas emission scenarios predicts 85 % to over 97 % glacier volume loss by the end of the 21st century. The loss of glaciers from this region will have profound impacts on local ecosystems and communities that rely on meltwater from glacierized catchments. 
    more » « less
  5. null (Ed.)
    Abstract Paleoperspectives of climate provide important information for understanding future climate, particularly in arid regions such as California, where water availability is uncertain from year to year. Here, we present a record from Barley Lake, California, focusing on the interval spanning the Younger Dryas (YD) to the early Holocene (EH), a period of acute and rapid global climate change. Twelve radiocarbon dates constrain the timing between 12.9 and 8.1 ka. We combine a variety of sediment analyses to infer changes in lake productivity, relative lake level, and runoff dynamics. In general, the lake is characterized by two states separated by a <200-year transition: (1) a variably deep, lower-productivity YD lake; and (2) a two-part variably shallow, higher-productivity EH lake. Inferred EH winter-precipitation runoff reveals dynamic multidecadal-to-centennial-scale variability, in agreement with the EH lake-level data. The Barley Lake archive captures both hemispheric and regional signals of climate change across the transition, suggesting a role for both ocean-atmosphere and insolation forcing. Our paleoperspective emphasizes California's sensitivity to climate change and how that change can generate abrupt shifts in limnological regimes. 
    more » « less