skip to main content

Title: Locomotion of an untethered, worm-inspired soft robot driven by a shape-memory alloy skeleton

Soft, worm-like robots show promise in complex and constrained environments due to their robust, yet simple movement patterns. Although many such robots have been developed, they either rely on tethered power supplies and complex designs or cannot move external loads. To address these issues, we here introduce a novel, maggot-inspired, magnetically driven “mag-bot” that utilizes shape memory alloy-induced, thermoresponsive actuation and surface pattern-induced anisotropic friction to achieve locomotion inspired by fly larvae. This simple, untethered design can carry cargo that weighs up to three times its own weight with only a 17% reduction in speed over unloaded conditions thereby demonstrating, for the first time, how soft, untethered robots may be used to carry loads in controlled environments. Given their small scale and low cost, we expect that these mag-bots may be used in remote, confined spaces for small objects handling or as components in more complex designs.

; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Scientific Reports
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Today’s use of large-scale industrial robots is enabling extraordinary achievement on the assembly line, but these robots remain isolated from the humans on the factory floor because they are very powerful, and thus dangerous to be around. In contrast, the soft robotics research community has proposed soft robots that are safe for human environments. The current state of the art enables the creation of small-scale soft robotic devices. In this article we address the gap between small-scale soft robots and the need for human-sized safe robots by introducing a new soft robotic module and multiple human-scale robot configurations based on this module. We tackle large-scale soft robots by presenting a modular and reconfigurable soft robotic platform that can be used to build fully functional and untethered meter-scale soft robots. These findings indicate that a new wave of human-scale soft robots can be an alternative to classic rigid-bodied robots in tasks and environments where humans and machines can work side by side with capabilities that include, but are not limited to, autonomous legged locomotion and grasping.
  2. Abstract

    Wearable robotics, also called exoskeletons, have been engineered for human-centered assistance for decades. They provide assistive technologies for maintaining and improving patients’ natural capabilities towards self-independence and also enable new therapy solutions for rehabilitation towards pervasive health. Upper limb exoskeletons can significantly enhance human manipulation with environments, which is crucial to patients’ independence, self-esteem, and quality of life. For long-term use in both in-hospital and at-home settings, there are still needs for new technologies with high comfort, biocompatibility, and operability. The recent progress in soft robotics has initiated soft exoskeletons (also called exosuits), which are based on controllable and compliant materials and structures. Remarkable literature reviews have been performed for rigid exoskeletons ranging from robot design to different practical applications. Due to the emerging state, few have been focused on soft upper limb exoskeletons. This paper aims to provide a systematic review of the recent progress in wearable upper limb robotics including both rigid and soft exoskeletons with a focus on their designs and applications in various pervasive healthcare settings. The technical needs for wearable robots are carefully reviewed and the assistance and rehabilitation that can be enhanced by wearable robotics are particularly discussed. The knowledge from rigid wearablemore »robots may provide practical experience and inspire new ideas for soft exoskeleton designs. We also discuss the challenges and opportunities of wearable assistive robotics for pervasive health.

    « less
  3. Many soft robots are capable of significantly changing their shape, an ability that can offer advantages in many applications. For instance, such a robot can flatten its body to fit under small gaps and expand to move over large obstacles. Further, because these shape changes are usually driven by a pressurized fluid, if they act over a large area, they have the potential to apply large forces to the world. However, when these same shape changes are used for the locomotion of an untethered robot, they tend to result in slow forward movement. Here we present a hybrid soft-rigid elongated-sphere robot that decouples shape change from locomotion. Pairing a compliant, inflatable outer skin, which changes volume by 15x to both fit under and roll over obstacles and can lift objects up to 30 kg, with a wheeled internal carriage, we obtain relatively fast locomotion. A new two-sided controllable adhesive between the internal carriage and the skin enables the carriage to climb vertically inside the skin, allowing the robot to climb external obstacles. We present the design of the robot, simple modeling of its behavior, and experimental testing. Our work advances the area of hybrid soft-rigid robotics by demonstrating how leveragingmore »the strengths of both soft and rigid systems can have quantifiable performance benefits.« less
  4. Oscillation plays a vital role in the survival of living organisms in changing environments, and its relevant research has inspired many biomimetic approaches to soft autonomous robotics. However, it remains challenging to create mechanical oscillation that can work under constant energy input and actively adjust the oscillation mode. Here, a steam-driven photothermal oscillator operating under constant light irradiation has been developed to perform continuous or pulsed, damped harmonic mechanical oscillations. The key component of the oscillator comprises a hydrogel containing Fe 3 O 4 /Cu hybrid nanorods, which can convert light into heat and generate steam bubbles. Controllable perturbation to the thermomechanical equilibrium of the oscillator can thus be achieved, leading to either continuous or pulsed oscillation depending on the light intensity. Resembling the conventional heat steam engine, this environment-dictated multimodal oscillator uses steam as the working fluid, enabling the design of self-adaptive soft robots that can actively adjust their body functions and working modes in response to environmental changes. An untethered biomimetic neuston-like robot is further developed based on this soft steam engine, which can adapt its locomotion mechanics between uniform and recurrent swimming to light intensity changes and perform on-demand turning under continuous light irradiation. Fueled by watermore »and remotely powered by light, this unique hydrogel oscillator enables easy control over the oscillation dynamics and modes, offering an effective approach to self-adaptive soft robots and solar steam engines.« less
  5. We present simplified 2D dynamic models of the 3D, passive dynamic inspired walking gait of a physical quasi-passive walking robot. Quasi-passive walkers are robots that integrate passive walking principles and some form of actuation. Our ultimate goal is to better understand the dynamics of actuated walking in order to create miniature, untethered, bipedal walking robots. At these smaller scales there is limited space and power available, and so in this work we leverage the passive dynamics of walking to reduce the burden on the actuators and controllers. Prior quasi-passive walkers are much larger than our intended scale, have more complicated mechanical designs, and require more precise feedback control and/or learning algorithms. By leveraging the passive 3D dynamics, carefully designing the spherical feet, and changing the actuation scheme, we are able to produce a very simple 3D bipedal walking model that has a total of 5 rigid bodies and a single actuator per leg. Additionally, the model requires no feedback as each actuator is controlled by an open-loop sinusoidal profile. We validate this model in 2D simulations in which we measure the stability properties while varying the leg length/amplitude ratio, the frequency of actuation, and the spherical foot profile. These resultsmore »are also validated experimentally on a 3D walking robot (15cm leg length) that implements the modeled walking dynamics. Finally, we experimentally investigate the ability to control the heading of the robot by changing the open-loop control parameters of the robot.« less