skip to main content


Title: Modeling of lophotrichous bacteria reveals key factors for swimming reorientation
Abstract

Lophotrichous bacteria swim through fluid by rotating their flagellar bundle extended collectively from one pole of the cell body. Cells experience modes of motility such as push, pull, and wrapping, accompanied by pauses of motor rotation in between. We present a mathematical model of a lophotrichous bacterium and investigate the hydrodynamic interaction of cells to understand their swimming mechanism. We classify the swimming modes which vary depending on the bending modulus of the hook and the magnitude of applied torques on the motor. Given the hook’s bending modulus, we find that there exist corresponding critical thresholds of the magnitude of applied torques that separate wrapping from pull in CW motor rotation, and overwhirling from push in CCW motor rotation, respectively. We also investigate reoriented directions of cells in three-dimensional perspectives as the cell experiences different series of swimming modes. Our simulations show that the transition from a wrapping mode to a push mode and pauses in between are key factors to determine a new path and that the reoriented direction depends upon the start time and duration of the pauses. It is also shown that the wrapping mode may help a cell to escape from the region where the cell is trapped near a wall.

 
more » « less
Award ID(s):
1853591
NSF-PAR ID:
10381805
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During closed mitosis in fission yeast, growing microtubules push onto the nuclear envelope to deform it, which results in fission into two daughter nuclei. The resistance of the envelope to bending, quantified by the flexural stiffness, helps determine the microtubule-dependent nuclear shape transformations. Computational models of envelope mechanics have assumed values of the flexural stiffness of the envelope based on simple scaling arguments. The validity of these estimates is in doubt, however, owing to the complex structure of the nuclear envelope. Here, we performed computational analysis of the bending of the nuclear envelope under applied force using a model that accounts for envelope geometry. Our calculations show that the effective bending modulus of the nuclear envelope is an order of magnitude larger than a single membrane and approximately five times greater than the nuclear lamina. This large bending modulus is in part due to the 45 nm separation between the two membranes, which supports larger bending moments in the structure. Further, the effective bending modulus is highly sensitive to the geometry of the nuclear envelope, ranging from twofold to an order magnitude larger than the corresponding single membrane. These results suggest that spatial variations in geometry and mechanical environment of the envelope may cause a spatial distribution of flexural stiffness in the same nucleus. Overall, our calculations support the possibility that the nuclear envelope may balance significant mechanical stresses in yeast and in cells from higher organisms. 
    more » « less
  2. Abstract

    Elastic filaments driven out of equilibrium display complex phenomena that involve periodic changes in their shape. Here, the periodic deformation dynamics of semiflexible colloidal chains in an eccentric magnetic field are presented. This field changes both its magnitude and direction with time, leading to novel nonequilibrium chain structures. Deformation into S-, Z-, and 4-mode shapes arises via the propagation and growth of bending waves. Transitions between these morphologies are governed by an interplay among magnetic, viscous, and elastic forces. Furthermore, the periodic behavior leading to these structures is described by four distinct stages of motion that include rotation, arrest, bending, and stretching of the chain. These stages correspond to specific intervals of the eccentric field’s period. A scaling analysis that considers the relative ratio of viscous to magnetic torques via a critical frequency illustrates how to maximize the bending energy. These results provide new insights into controlling colloidal assemblies by applying complex magnetic fields.

     
    more » « less
  3. Abstract Plate reconstruction models are constructed to fit constraints such as magnetic anomalies, fracture zones, paleomagnetic poles, geological observations and seismic tomography. However, these models do not consider the physical equations of plate driving forces when reconstructing plate motion. This can potentially result in geodynamically-implausible plate motions, which has implications for a range of work based on plate reconstruction models. We present a new algorithm that calculates time-dependent slab pull, ridge push (GPE force) and mantle drag resistance for any topologically closed reconstruction, and evaluates the residuals—or missing components—required for torques to balance given our assumed plate driving force relationships. In all analyzed models, residual torques for the present-day are three orders of magnitude smaller than the typical driving torques for oceanic plates, but can be of the same order of magnitude back in time—particularly from 90 to 50 Ma. Using the Pacific plate as an example, we show how our algorithm can be used to identify areas and times with high residual torques, where either plate reconstructions have a high degree of geodynamic implausibility or our understanding of the underlying geodynamic forces is incomplete. We suggest strategies for plate model improvements and also identify times when other forces such as active mantle flow were likely important contributors. Our algorithm is intended as a tool to help assess and improve plate reconstruction models based on a transparent and expandable set of a priori dynamic constraints. 
    more » « less
  4. Swimming at the microscale typically involves two modes of motion: mechanical propulsion and propulsion due to field interactions. During mechanical propulsion, particles swim by reconfiguring their geometry. When propelled by field interactions, body forces such as phoretic interactions drive mobility. In this work, we employ slender-body theory to explore how a bent rod actuator propels due to a mechanical mode of swimming via hinge articulations and due to a chemical mode of swimming via diffusiophoretic interactions with a solute field. Although previous theoretical studies have examined mechanical and chemical modes of swimming in isolation, the simultaneous investigation of both modes has remained unexplored. For the mechanical mode of swimming, our calculations, both numerical and analytical, recover Purcell’s scallop theorem and show that the bent rod actuator experiences zero net displacement during reciprocal motion. Additionally, we calculate the trajectories traced by a bent rod actuator under a non-reciprocal hinge articulation, revealing that these trajectories are influenced by the amplitude of the hinge articulation, geometric asymmetry, and the angular velocity distribution between the two arms of the bent rod actuator. We provide intuitive explanations for these effects using free-body diagrams. Furthermore, we explore the motion induced by simultaneous hinge articulations and self-diffusiophoresis. We observe that hinge articulations can modify the effective phoretic forces and torques acting on the bent rod actuator, either supporting or impeding propulsion. Additionally, during self-diffusiophoretic propulsion, reciprocal hinge articulations no longer result in zero net displacement. In summary, our findings chart a new direction for designing micron-sized objects that harness both mechanical and chemical modes of propulsion synchronously, offering a mechanism to enact control over trajectories.

     
    more » « less
  5. Fusion-associated small transmembrane (FAST) proteins are a diverse family of nonstructural viral proteins. Once expressed on the plasma membrane of infected cells, they drive fusion with neighboring cells, increasing viral spread and pathogenicity. Unlike viral fusogens with tall ectodomains that pull two membranes together through conformational changes, FAST proteins have short fusogenic ectodomains that cannot bridge the intermembrane gap between neighboring cells. One orthoreovirus FAST protein, p14, has been shown to hijack the actin cytoskeleton to drive cell-cell fusion, but the actin adaptor-binding motif identified in p14 is not found in any other FAST protein. Here, we report that an evolutionarily divergent FAST protein, p22 from aquareovirus, also hijacks the actin cytoskeleton but does so through different adaptor proteins, Intersectin-1 and Cdc42, that trigger N-WASP–mediated branched actin assembly. We show that despite using different pathways, the cytoplasmic tail of p22 can replace that of p14 to create a potent chimeric fusogen, suggesting they are modular and play similar functional roles. When we directly couple p22 with the parallel filament nucleator formin instead of the branched actin nucleation promoting factor N-WASP, its ability to drive fusion is maintained, suggesting that localized mechanical pressure on the plasma membrane coupled to a membrane-disruptive ectodomain is sufficient to drive cell-cell fusion. This work points to a common biophysical strategy used by FAST proteins to push rather than pull membranes together to drive fusion, one that may be harnessed by other short fusogens responsible for physiological cell-cell fusion.

     
    more » « less