skip to main content


Title: Geometry of the nuclear envelope determines its flexural stiffness
During closed mitosis in fission yeast, growing microtubules push onto the nuclear envelope to deform it, which results in fission into two daughter nuclei. The resistance of the envelope to bending, quantified by the flexural stiffness, helps determine the microtubule-dependent nuclear shape transformations. Computational models of envelope mechanics have assumed values of the flexural stiffness of the envelope based on simple scaling arguments. The validity of these estimates is in doubt, however, owing to the complex structure of the nuclear envelope. Here, we performed computational analysis of the bending of the nuclear envelope under applied force using a model that accounts for envelope geometry. Our calculations show that the effective bending modulus of the nuclear envelope is an order of magnitude larger than a single membrane and approximately five times greater than the nuclear lamina. This large bending modulus is in part due to the 45 nm separation between the two membranes, which supports larger bending moments in the structure. Further, the effective bending modulus is highly sensitive to the geometry of the nuclear envelope, ranging from twofold to an order magnitude larger than the corresponding single membrane. These results suggest that spatial variations in geometry and mechanical environment of the envelope may cause a spatial distribution of flexural stiffness in the same nucleus. Overall, our calculations support the possibility that the nuclear envelope may balance significant mechanical stresses in yeast and in cells from higher organisms.  more » « less
Award ID(s):
1727271 1562043
NSF-PAR ID:
10188445
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Molecular Biology of the Cell
Volume:
31
Issue:
16
ISSN:
1059-1524
Page Range / eLocation ID:
1815 to 1821
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objective. The force that an electrocorticography (ECoG) array exerts on the brain manifests when it bends to match the curvature of the skull and cerebral cortex. This force can negatively impact both short-term and long-term patient outcomes. Here we provide a mechanical characterization of a novel liquid crystal polymer (LCP) ECoG array prototype to demonstrate that its thinner geometry reduces the force potentially applied to the cortex of the brain. Approach. We built a low-force flexural testing machine to measure ECoG array bending forces, calculate their effective flexural moduli, and approximate the maximum force they could exerted on the human brain. Main results. The LCP ECoG prototype was found to have a maximal force less than 20% that of any commercially available ECoG arrays that were tested. However, as a material, LCP was measured to be as much as 24× more rigid than silicone, which is traditionally used in ECoG arrays. This suggests that the lower maximal force resulted from the prototype’s thinner profile (2.9×–3.25×). Significance. While decreasing material stiffness can lower the force an ECoG array exhibits, our LCP ECoG array prototype demonstrated that flexible circuit manufacturing techniques can also lower these forces by decreasing ECoG array thickness. Flexural tests of ECoG arrays are necessary to accurately assess these forces, as material properties for polymers and laminates are often scale dependent. As the polymers used are anisotropic, elastic modulus cannot be used to predict ECoG flexural behavior. Accounting for these factors, we used our four-point flexure testing procedure to quantify the forces exerted on the brain by ECoG array bending. With this experimental method, ECoG arrays can be designed to minimize force exerted on the brain, potentially improving both acute and chronic clinical utility. 
    more » « less
  2. The genome inside the eukaryotic cells is guarded by a unique shell structure, called the nuclear envelope (NE), made of lipid membranes. This structure has an ultra torus topology with thousands of torus-shaped holes that imparts the structure a high flexural stiffness. Inspired from this biological design, here we present a novel “torene” architecture to design lightweight shell structures with ultra-stiffness for engineering applications. We perform finite element analyses on classic benchmark problems to investigate the mechanics of torene shells. This study reveals that the torene shells can achieve one order of magnitude or higher flexural stiffness than traditional shells with the same amount of material. This novel geometric strategy opens new avenues to exploit additive manufacturing to design lightweight shell structures for extreme mechanical environments.

     
    more » « less
  3. Biological membranes are host to proteins and molecules which may form domain-like structures resulting in spatially varying material properties. Vesicles with such heterogeneous membranes can exhibit intricate shapes at equilibrium and rich dynamics when placed into a flow. Under the assumption of small deformations and a two-dimensional system, we develop a reduced-order model to describe the fluid-structure interaction between a viscous background shear flow and an inextensible membrane with spatially varying bending stiffness and spontaneous curvature. Material property variations of a critical magnitude, relative to the flow rate and internal/external viscosity contrast, can set off a qualitative change in the vesicle dynamics. A membrane of nearly constant bending stiffness or spontaneous curvature undergoes a small amplitude swinging motion (which includes tangential tank-treading), while for large enough material variations the dynamics pass through a regime featuring tumbling and periodic phase-lagging of the membrane material, and ultimately for very large material variation to a rigid-body tumbling behaviour. Distinct differences are found for even and odd spatial modes of domain distribution. Full numerical simulations are used to probe the theoretical predictions, which appear valid even when studying substantially deformed membranes. 
    more » « less
  4. We introduce a class of ultra-light and ultra-stiff sandwich panels designed for use in photophoretic levitation applications and investigate their mechanical behavior using both computational analyses and micro-mechanical testing. The sandwich panels consist of two face sheets connected with a core that consists of hollow cylindrical ligaments arranged in a honeycomb-based hexagonal pattern. Computational modeling shows that the panels have superior bending stiffness and buckling resistance compared to similar panels with a basketweave core, and that their behavior is well described by Uflyand-Mindlin plate theory. By optimizing the ratio of the face sheet thickness to the ligament wall thickness, panels maybe obtained that have a bending stiffness that is more than five orders of magnitude larger than that of a solid plate with the same area density. Using a scalable microfabrication process, we demonstrate that panels as large as 3 × 3 cm2 with a volumetric density of 20 kg/m3 and corresponding area density of 2 g/m2 can be made in a few hours. Micro-mechanical testing of the panels is performed by deflecting microfabricated cantilevered panels using a nanoindenter. The experimentally measured bending stiffness of the cantilevered panels is in very good agreement with the computational results, demonstrating exquisite control over the dimensions, form, and properties of the microfabricated panels. 
    more » « less
  5. null (Ed.)
    Cells sense mechanical signals within the extracellular matrix, the most familiar being stiffness, but matrix stiffness cannot be simply described by a single value. Randomness in matrix structure causes stiffness at the scale of a cell to vary by more than an order of magnitude. Additionally, the extracellular matrix contains ducts, blood vessels, and, in cancer or fibrosis, regions with abnormally high stiffness. These different features could alter the stiffness sensed by a cell, but it is unclear whether the change in stiffness is large enough to overcome the noise caused by heterogeneity due to the random fibrous structure. Here we used a combination of experiments and modeling to determine the extent to which matrix heterogeneity disrupts the potential for cell sensing of a locally stiff feature in the matrix. Results showed that, at the scale of a single cell, spatial heterogeneity in local stiffness was larger than the increase in stiffness due to a stiff feature. The heterogeneity was reduced only for large length scales compared to the fiber length. Experiments verified this conclusion, showing spheroids of cells, which were large compared to the average fiber length, spreading preferentially toward stiff inclusions. Hence, the propagation of mechanical cues through the matrix depends on length scale, with single cells being able to sense only the stiffness of the nearby fibers and multicellular structures, such as tumors, also sensing the stiffness of distant matrix features. 
    more » « less