Abrupt monsoon onsets/retreats are indispensable targets for climate prediction and future projection, but the origins of their abruptness remain elusive. This study establishes the existence of three climatological Madden-Julian Oscillation (CMJO) episodes contributing to the rapid Australian summer monsoon retreat in mid-March, the South China Sea (or East Asian) summer monsoon onset in mid-May, and the Indian summer monsoon onset in early June. The CMJO displays a dynamically coherent convection-circulation structure resembling its transitionary counterpart, demonstrating its robustness as a convectively coupled circulation system and the tendency of the transient MJOs’ phase-lock to the annual cycle. The CMJO is inactive during the boreal winter due to destructive year-to-year modulations of El Niño-Southern Oscillation. We hypothesize that the interaction between atmospheric internal variability (MJO) and the insolation-forced slow annual cycle generates the sudden monsoon withdrawal/onset during the boreal spring. Understanding the factors determining the timing and location of the MJO’s phase-locking and its variability is vital for monsoon forecasting and climate projection.
Accurate prediction of global land monsoon rainfall on a sub-seasonal (2–8 weeks) time scale has become a worldwide demand. Current forecasts of weekly-mean rainfall in most monsoon regions, however, have limited skills beyond two weeks, calling for a more profound understanding of monsoon intraseasonal variability (ISV). We show that the high-frequency (HF; 8–20 days) ISV, crucial for the Week 2 and Week 3 predictions, accounts for about 53–70% of the total (8–70 days) ISV, generally dominating the sub-seasonal predictability of various land monsoons, while the low-frequency (LF; 20–70 days)’s contribution is comparable to HF only over Australia (AU; 47%), South Asia (SA; 43%), and South America (SAM; 40%). The leading modes of HFISVs in Northern Hemisphere (NH) monsoons primarily originate from different convectively coupled equatorial waves, while from mid-latitude wave trains for Southern Hemisphere (SH) monsoons and East Asian (EA) monsoon. The Madden-Julian Oscillation (MJO) directly regulates LFISVs in Asian-Australian monsoon and affects American and African monsoons by exciting Kelvin waves and mid-latitude teleconnections. During the past four decades, the HF (LF) ISVs have considerably intensified over Asian (Asian-Australian) monsoon but weakened over American (SAM) monsoon. Sub-seasonal to seasonal (S2S) prediction models exhibit higher sub-seasonal prediction skills over AU, SA, and SAM monsoons that have larger LFISV contributions than other monsoons. These results suggest an urgent need to improve the simulation of convectively coupled equatorial waves and two-way interactions between regional monsoon ISVs and mid-latitude processes and between MJO and regional monsoons, especially under the global warming scenarios.
more » « less- Award ID(s):
- 2025057
- PAR ID:
- 10381817
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Climate and Atmospheric Science
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2397-3722
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The monsoon holds great significance in Asian‐Australian civilization. Recent studies realized the link between the monsoon onset and the seasonal migration of the Intertropical Convergence Zone (ITCZ). However, no clear ITCZ band is observed in the Asian‐Australian sector due to the strong influence of topography. Instead, there exists a large‐scale (∼1,500 km) tropical convective cell––a perennial system that we hereafter coin as the “intertropical convective cell (ITCC).” Using ERA5 reanalysis and satellite‐based outgoing longwave radiation products, here we show by objective detection and tracking that the ITCC exhibits eight phases during its seasonal migration along the Asian‐Maritime land bridge. Particularly, its sudden northward jump in boreal spring coincides well with the earliest (abrupt) onset of the Asian rainy season, while its equatorward retreat heralds the overall (gradual) monsoon withdrawal. These findings demonstrate the close link of the ITCC behavior to the spring‐fall asymmetry of the monsoon. Dynamically, the off‐equatorial ITCC features a monsoon regime with a cross‐equatorial overturning circulation, differing markedly from its equatorial regime with two weak overturning cells on each side. Further budget analyses prove our hypothesis that the north‐south charging gradient of the moist static energy determines the ITCC's spring‐fall asymmetric propagation, illuminating the physical origin of the spring‐fall asymmetry in the monsoon. Our results demonstrate the usefulness of the ITCC framework in understanding the Asian‐Australian monsoon complexity in a fresh and holistic manner. The framework will facilitate monsoon diagnosis, modeling and subseasonal‐to‐seasonal forecasting in the Asian‐Australian sector.
-
The Madden–Julian Oscillation (MJO) is a large-scale tropical weather system that generates heavy rainfall over the equatorial Indian and western Pacific Oceans on a 40–50 day cycle. Its circulation propagates eastward around the entire world and impacts tropical cyclone genesis, monsoon onset, and mid-latitude flooding. This study examines the mechanism of the MJO in the Lagrangian atmospheric model (LAM), which has been shown to simulate the MJO accurately, and which predicts that MJO circulations will intensify as oceans warm. The LAM MJO’s first baroclinic circulation is projected onto a Kelvin wave leaving a residual that closely resembles a Rossby wave. The contribution of each wave type to moisture and moist enthalpy budgets is assessed. While the vertical advection of moisture by the Kelvin wave accounts for most of the MJO’s precipitation, this wave also exports a large amount of dry static energy, so that in total, it reduces the column integrated moist enthalpy during periods of heavy precipitation. In contrast, the Rossby wave’s horizontal circulation builds up moisture prior to the most intense convection, and its surface wind perturbations enhance evaporation near the center of MJO convection. Surface fluxes associated with the Kelvin wave help to maintain its circulation outside of the MJO’s convectively active region.more » « less
-
Abstract The oceanic surface mixed layer salinity (MLS) budget of the central and eastern equatorial Indian Ocean during boreal fall and winter is studied using in situ and remote sensing measurements. Budgets on roughly 100 km scale were constructed using data from two
DYNA mics of theM adden–JulianO scillation and twoR esearch MooredA rray for African‐Asian‐AustralianM onsoonA nalysis and Prediction moorings near 79°E during September 2011 to January 2012. The horizontal advective salinity flux plays a significant role in the seasonal variation of equatorial MLS. In boreal fall, the equatorial and 1.5°S MLS increases due to horizontal advection and turbulent mixing, despite the freshening surface flux associated with MJOs. In boreal winter, with larger sub‐monthly variation and uncertainties, the decreasing of equatorial MLS is accounted by freshening zonal advection and surface flux, abated by salty meridional advection; the 1.5°S MLS is explained by the combination of freshening meridional advection and surface flux, and salty zonal advection. Budgets between 2011 and 2015 are investigated using data products from Tropical Rainfall Measuring Mission, Aquarius, Ocean Surface Current Analyses Real‐time, Objectively Analyzed air‐sea Fluxes, and Argo mixed layers over a wider region. The eastward development of the equatorial salinity tongue in the central to eastern Indian Ocean in boreal fall and the westward retreat in boreal winter are largely determined by the equatorial zonal current. The meridional migration of ITCZ rainfall plays a secondary role. In order to improve model prediction skills of MLS changes in the equatorial Indian Ocean, both zonal and meridional salinity advective fluxes, at a spatial scale of 1° longitude and latitude and a timescale less than days, need to be properly simulated. -
Abstract Deep convection from monsoons has been shown to be a major tropospheric source of gravity waves (GWs) in the summer hemisphere. These GWs can propagate up to the upper mesosphere, either vertically (over the same latitude) or obliquely (latitudinal propagation away from their source), where they dissipate and release their momentum. These waves play an important role in the global dynamical structure of the middle atmosphere. Understanding their hemispheric and seasonal variations could improve the GW parameterization schemes in present global models. To this end, this paper reports on a GW ray‐tracing analysis using the GROGRAT model to simulate the propagation of GWs from the monsoon regions in the northern and the southern hemispheres during both the summer and the winter seasons. The 20 simulations show the southern hemisphere to be more conducive to both the vertical and the oblique propagation of mesospheric GWs compared to the northern hemisphere, regardless of season. This is partially due to a stronger GW filtering in the northern hemisphere near the tropopause where a third of the waves have been vertically reflected. We also show that an increase in the horizontal wavelength increases not only the latitudinal component but also the longitudinal component of the oblique propagation of GWs. The broad spectrum of waves with different horizontal wavelengths and horizontal phase speeds used in this study highlights the existence of an upper limit in the horizontal wavelength of GWs that can reach the upper mesosphere.