skip to main content

Title: Field-induced quantum critical point in the itinerant antiferromagnet Ti3Cu4
Abstract

New phases of matter emerge at the edge of magnetic instabilities, which can occur in materials with moments that are localized, itinerant or intermediate between these extremes. In local moment systems, such as heavy fermions, the magnetism can be tuned towards a zero-temperature transition at a quantum critical point (QCP) via pressure, chemical doping, and, rarely, magnetic field. By contrast, in itinerant moment systems, QCPs are more rare, and they are induced by pressure or doping; there are no known examples of field induced transitions. This means that no universal behaviour has been established across the whole itinerant-to-local moment range—a substantial gap in our knowledge of quantum criticality. Here we report an itinerant antiferromagnet, Ti3Cu4, that can be tuned to a QCP by a small magnetic field. We see signatures of quantum criticality and the associated non-Fermi liquid behaviour in thermodynamic and transport measurements, while band structure calculations point to an orbital-selective, spin density wave ground state, a consequence of the square net structural motif in Ti3Cu4. Ti3Cu4thus provides a platform for the comparison and generalisation of quantum critical behaviour across the whole spectrum of magnetism.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1903741 1917511
Publication Date:
NSF-PAR ID:
10381852
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. In the physics of condensed matter, quantum critical phenomena and unconventional superconductivity are two major themes. In electron-doped cuprates, the low critical field (HC2) allows one to study the putative quantum critical point (QCP) at low temperature and to understand its connection to the long-standing problem of the origin of the high-TCsuperconductivity. Here we present measurements of the low-temperature normal-state thermopower (S) of the electron-doped cuprate superconductor La2−xCexCuO4(LCCO) fromx= 0.11–0.19. We observe quantum criticalS/Tversusln(1/T)behavior over an unexpectedly wide doping rangex= 0.15–0.17 above the QCP (x= 0.14), with a slope that scales monotonically with the superconducting transition temperature (TCwith H = 0). The presence of quantum criticality over a wide doping range provides a window on the criticality. The thermopower behavior also suggests that the critical fluctuations are linked withTC. Above the superconductivity dome, atx= 0.19, a conventional Fermi-liquidSTbehavior is found forT40 K.

  2. Abstract

    In the presence of strong spin-independent interactions and spin-orbit coupling, we show that the spinor Bose liquid confined to one spatial dimension undergoes an interaction- or density-tuned quantum phase transition similar to one theoretically proposed for itinerant magnetic solid-state systems. The order parameter describes broken Z2inversion symmetry, with the ordered phase accompanied by non-vanishing momentum which is generated by fluctuations of an emergent dynamical gauge field at the phase transition. This quantum phase transition has dynamical critical exponentz ≃ 2, typical of a Lifshitz transition, but is described by a nontrivial interacting fixed point. From direct numerical simulation of the microscopic model, we extract previously unknown critical exponents for this fixed point. Our model describes a realistic situation of 1D ultracold atoms with Raman-induced spin-orbit coupling, establishing this system as a platform for studying exotic critical behavior of the Hertz-Millis type.

  3. Abstract

    Strong electronic nematic fluctuations have been discovered near optimal doping for several families of Fe-based superconductors, motivating the search for a possible link between these fluctuations, nematic quantum criticality, and high temperature superconductivity. Here we probe a key prediction of quantum criticality, namely power-law dependence of the associated nematic susceptibility as a function of composition and temperature approaching the compositionally tuned putative quantum critical point. To probe the ‘bare’ quantum critical point requires suppression of the superconducting state, which we achieve by using large magnetic fields, up to 45 T, while performing elastoresistivity measurements to follow the nematic susceptibility. We performed these measurements for the prototypical electron-doped pnictide, Ba(Fe1−xCox)2As2, over a dense comb of dopings. We find that close to the putative quantum critical point, the elastoresistivity appears to obey power-law behavior as a function of composition over almost a decade of variation in composition. Paradoxically, however, we also find that the temperature dependence for compositions close to the critical value cannot be described by a single power law.

  4. An understanding of the normal state in the high-temperature superconducting cuprates is crucial to the ultimate understanding of the long-standing problem of the origin of the superconductivity itself. This so-called “strange metal” state is thought to be associated with a quantum critical point (QCP) hidden beneath the superconductivity. In electron-doped cuprates—in contrast to hole-doped cuprates—it is possible to access the normal state at very low temperatures and low magnetic fields to study this putative QCP and to probe the T ➔ 0 K state of these materials. We report measurements of the low-temperature normal-state magnetoresistance (MR) of the n-type cuprate system La 2− x Ce x CuO 4 and find that it is characterized by a linear-in-field behavior, which follows a scaling relation with applied field and temperature, for doping ( x ) above the putative QCP ( x = 0.14). The magnitude of the unconventional linear MR decreases as T c decreases and goes to zero at the end of the superconducting dome ( x ~ 0.175) above which a conventional quadratic MR is found. These results show that there is a strong correlation between the quantum critical excitations of the strange metal state and the high- T cmore »superconductivity.« less
  5. Abstract

    Near critical doping, high-temperature superconductors exhibit multiple anomalies associated with enhanced electronic correlations and quantum criticality. Quasiparticle mass enhancement approaching optimal doping has been reported in quantum oscillation measurements in both cuprate and pnictide superconductors. Although the data are suggestive of enhanced interactions, the microscopic theory of quantum oscillation measurements near a quantum critical point is not yet firmly established. It is therefore desirable to have a direct thermodynamic measurement of quasiparticle mass. Here we report high-magnetic field measurements of heat capacity in the doped pnictide superconductor BaFe2(As1−xPx)2. We observe saturation of the specific heat at high magnetic field in a broad doping range above optimal doping which enables a direct determination of the electronic density of states recovered when superconductivity is suppressed. Our measurements find a strong total mass enhancement in the Fermi pockets that superconduct. This mass enhancement extrapolates to a mass divergence at a critical doping ofx = 0.28.