skip to main content

Search for: All records

Award ID contains: 1917511

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The search for quantum spin liquids—topological magnets with fractionalized excitations—has been a central theme in condensed matter and materials physics. Despite numerous theoretical proposals, connecting experiment with detailed theory exhibiting a robust quantum spin liquid has remained a central challenge. Here, focusing on the strongly spin-orbit coupled effectiveS = 1/2 pyrochlore magnet Ce2Zr2O7, we analyze recent thermodynamic and neutron-scattering experiments, to identify a microscopic effective Hamiltonian through a combination of finite temperature Lanczos, Monte Carlo, and analytical spin dynamics calculations. Its parameter values suggest the existence of an exotic phase, aπ-flux U(1) quantum spin liquid. Intriguingly, the octupolar nature of the moments makes them less prone to be affected by magnetic disorder, while also hiding some otherwise characteristic signatures from neutrons, making this spin liquid arguably more stable than its more conventional counterparts.

  2. Abstract Kondo lattice materials, where localized magnetic moments couple to itinerant electrons, provide a very rich backdrop for strong electron correlations. They are known to realize many exotic phenomena, with a dramatic example being recent observations of quantum oscillations and metallic thermal conduction in insulators, implying the emergence of enigmatic charge-neutral fermions. Here, we show that thermal conductivity and specific heat measurements in insulating YbIr 3 Si 7 reveal emergent neutral excitations, whose properties are sensitively changed by a field-driven transition between two antiferromagnetic phases. In the low-field phase, a significant violation of the Wiedemann-Franz law demonstrates that YbIr 3 Si 7 is a charge insulator but a thermal metal. In the high-field phase, thermal conductivity exhibits a sharp drop below 300 mK, indicating a transition from a thermal metal into an insulator/semimetal driven by the magnetic transition. These results suggest that spin degrees of freedom directly couple to the neutral fermions, whose emergent Fermi surface undergoes a field-driven instability at low temperatures.
    Free, publicly-accessible full text available December 1, 2023
  3. Abstract Topological semimetals with symmetry-protected band crossings have emerged as a rich landscape to explore intriguing electronic phenomena. Nonsymmorphic symmetries in particular have been shown to play an important role in protecting the crossings along a line (rather than a point) in momentum space. Here we report experimental and theoretical evidence for Dirac nodal line crossings along the Brillouin zone boundaries in PtPb 4 , arising from the nonsymmorphic symmetry of its crystal structure. Interestingly, while the nodal lines would remain gapless in the absence of spin–orbit coupling (SOC), the SOC, in this case, plays a detrimental role to topology by lifting the band degeneracy everywhere except at a set of isolated points. Nevertheless, the nodal line is observed to have a bandwidth much smaller than that found in density functional theory (DFT). Our findings reveal PtPb 4 to be a material system with narrow crossings approximately protected by nonsymmorphic crystalline symmetries.
    Free, publicly-accessible full text available December 1, 2023
  4. Fascinating new phases of matter can emerge from strong electron interactions in solids. In recent years, a new exotic class of many-body phases, described by generalized electromagnetism of symmetric rank-2 electric and magnetic fields and immobile charge excitations dubbed fractons, has attracted wide attention. Beside interesting properties in their own right, they are also closely related to gapped fracton quantum orders, new phases of dipole-coversing systems, quantum information, and quantum gravity. However, experimental realization of the rank-2 U(1) gauge theory is still absent, and even known practical experimental routes are scarce. In this work we propose a scheme of coupled optical phonons and nematics as well as several of its concrete experimental constructions. They can realize the electrostatics sector of the rank-2 U(1) gauge theory. A great advantage of our scheme is that it requires only basic ingredients of phonon and nematic physics, hence can be applied to a wide range of nematic matters from liquid crystals to electron orbitals. We expect this work will provide crucial guidance for the realization of rank-2 U(1) and fracton states of matter on a variety of platforms.
    Free, publicly-accessible full text available July 1, 2023
  5. Environmental interaction is a fundamental consideration in any controlled quantum system. While interaction with a dissipative bath can lead to decoherence, it can also provide desirable emergent effects including induced spin-spin correlations. In this paper we show that under quite general conditions, a dissipative bosonic bath can induce a long-range ordered phase, without the inclusion of any additional direct spin-spin couplings. Through a quantum-to-classical mapping and classical Monte Carlo simulation, we investigate the T = 0 quantum phase transition of an Ising chain embedded in a bosonic bath with Ohmic dissipation. We show that the quantum critical point is continuous, Lorentz invariant with a dynamical critical exponent z = 1.07(9), has correlation length exponent nu = 0.80(5), and anomalous exponent eta = 1.02(6), thus the universality class distinct from the previously studied limiting cases. The implications of our results on experiments in ultracold atomic mixtures and qubit chains in dissipative environments are discussed.
    Free, publicly-accessible full text available April 1, 2023
  6. Magnetic frustrations and dimensionality play an important role in determining the nature of the magnetic long-range order and how it melts at temperatures above the ordering transition TN. In this work, we use large-scale Monte Carlo simulations to study these phenomena in a class of frustrated Ising spin models in two spatial dimensions. We find that the melting of the magnetic long-range order into an isotropic gas-like paramagnet proceeds via an intermediate stage where the classical spins remain anisotropically correlated. This correlated paramagnet exists in a temperature range TN < T < T, whose width increases as magnetic frustrations grow. This intermediate phase is typically characterized by short-range correlations, however the two-dimensional nature of the model allows for an additional exotic feature – formation of an incommensurate liquid-like phase with algebraically decaying spin correlations. The two-stage melting of magnetic order is generic and pertinent to many frustrated quasi-2D magnets with large (essentially classical) spins.
    Free, publicly-accessible full text available April 1, 2023
  7. New phases of matter emerge at the edge of magnetic instabilities. In local moment systems, such as heavy fermions, the magnetism can be destabilized by pressure, chemical doping, and, rarely, by magnetic field, towards a zero-temperature transition at a quantum critical point (QCP). Even more rare are instances of QCPs induced by pressure or doping in itinerant moment systems, with no known examples of analogous field-induced T = 0 transitions. Here we report the discovery of a new itinerant antiferromagnet with no magnetic constituents, in single crystals of Ti3Cu4 with T_N = 11.3 K. Band structure calculations point to an orbital-selective, spin density wave ground state, a consequence of the square net structural motif in Ti3Cu4. A small magnetic field, H_C = 4.87 T, suppresses the long-range order via a continuous second-order transition, resulting in a field-induced QCP. The magnetic Grüneisen ratio diverges as H→H_C and T→0, with a sign change at H_C and 1/T scaling at H = H_C, providing evidence from thermodynamic measurements for quantum criticality for H∥c. Non-Fermi liquid (NFL) to Fermi liquid (FL) crossover is observed close to the QCP, as revealed by the power law behavior of the electrical resistivity.
    Free, publicly-accessible full text available April 1, 2023
  8. Abstract Electrical magnetoresistance and tunnel diode oscillator measurements were performed under external magnetic fields up to 41 T applied along the crystallographic b axis (hard axis) of UTe 2 as a function of temperature and applied pressures up to 18.8 kbar. In this work, we track the field-induced first-order transition between superconducting and magnetic field-polarized phases as a function of applied pressure, showing suppression of the transition with increasing pressure until the demise of superconductivity near 16 kbar and the appearance of a pressure-induced ferromagnetic-like ground state that is distinct from the field-polarized phase and stable at zero field. Together with evidence for the evolution of a second superconducting phase and its upper critical field with pressure, we examine the confinement of superconductivity by two orthogonal magnetic phases and the implications for understanding the boundaries of triplet superconductivity.