Most chemical engineering core classes are best taught when students are exposed to a face-to-face learning/teaching environment. With the arrival of coronavirus disease 2019 (COVID-19), the whole education system and the setting were disrupted at Hampton University (HU). Traditional in-person face-to-face classes were forced to move to remote instructions to maintain a healthy and safe campus environment and minimize the spread of COVID-19 on campus and in the community. As an instructor teaching core courses and unit operations laboratory in the Department of Chemical Engineering, it was challenging to move completely virtual and deliver instructions remotely without affecting students' learning outcomes. However, with the appropriate modern technologies and adapting to the students' change and needs, online teaching can be done efficiently and can still have efficient learning outcomes. Various activities were introduced to make the online/virtual class environment engaging in developing technical and professional skills and inducing learning for students. Using the latest educational tools and online resources, formative assessments were conducted throughout the course in an effort to improve student learning and instructor teaching. In addition to that, innovative ways of technology were also used to evaluate student learning and understanding of the material for grading and reporting purposes. Many of the modern educational tools, including Blackboard Collaborate Ultra, Ka-hoot, linoit, surveys, polls, and chemical engineering processes’ simulations and videos were in-troduced to make the synchronous sessions interactive. Likert-like surveys conducted were anal-yses to gauge the effectiveness of incorporation of technology during remote learning. This paper describes the innovative use of technologies to adapt to the COVID-19 pandemic in the Chemical Engineering Classes. It will also explain the strategies to assess the mode of delivery efficacy and how to change the course of teaching to adapt to the students' changing needs. 
                        more » 
                        « less   
                    
                            
                            Remote learning slightly decreased student performance in an introductory undergraduate course on climate change
                        
                    
    
            Abstract Public understanding about complex issues such as climate change relies heavily on online resources. Yet the role that online instruction should assume in post-secondary science education remains contentious despite its near ubiquity during the COVID-19 pandemic. The objective here was to compare the performance of 1790 undergraduates taking either an online or face-to-face version of an introductory course on climate change. Both versions were taught by a single instructor, thus, minimizing instructor bias. Women, seniors, English language learners, and humanities majors disproportionately chose to enroll in the online version because of its ease of scheduling and accessibility. After correcting for performance-gaps among different demographic groups, the COVID-19 pandemic had no significant effect on online student performance and students in the online version scored 2% lower (on a scale of 0–100) than those in the face-to-face version, a penalty that may be a reasonable tradeoff for the ease of scheduling and accessibility that these students desire. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10381859
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Despite more focused attention in the wake of the COVID-19 pandemic, high online attrition remains both a concern and a mystery; gaps in our knowledge exist as to why students so often do not complete online courses. Pre-pandemic, and using a sample of 780 students who dropped out of fully online courses (or the same course face-to-face) from a large university system in the Northeast U.S., students were explicitly asked about their specific reasons for course withdrawal. All students enrolled in a fully online course (or a face-to-face section of the same course) at the City University of New York (CUNY) in fall 2015 were invited to take the online survey from which this study data was taken. Results indicate that there were distinct differences in the patterns of reasons given by online and face-to-face students: although the perceived quality of the instructor/instruction was deemed important to student persistence in both modalities, it seemed to be of greater importance face-to-face than online. Furthermore, issues related to time were found to be more prominent reasons for dropping for online learners than face-to-face learners. Findings from this study shed new light on the impetus for online attrition, with implications for online policy and course design in a post-pandemic era.more » « less
- 
            When schools and universities across the world transitioned online due to the COVID-19 pandemic, Ed+gineering, a National Science Foundation (NSF) project that partners engineering and education undergraduates to design and deliver engineering lessons to elementary students, also had to shift its hands-on lessons to a virtual format. Through the lens of social cognitive theory (SCT), this study investigates engineering and education students’ experiences during the shift to online instruction to understand how they perceived its influence on their learning. As a result of modifying their lessons for online delivery, students reported learning professional skills, including skills for teaching online and educational technology skills, as well as Science, Technology, Engineering, and Mathematics (STEM) content. Some also lamented missed learning opportunities, like practice presenting face-to-face. Students’ affective responses were often associated with preparing and delivering their lessons. SCT sheds light on how the mid-semester change in their environment, caused by the shift in designing and teaching from face-to-face to online, affected the undergraduate engineering and education students’ personal experiences and affect. Overall, the transition to fully online was effective for students’ perceived learning and teaching of engineering. Though students experienced many challenges developing multimedia content for delivering hands-on lessons online, they reported learning new skills and knowledge and expressed positive affective responses. From the gains reported by undergraduates, we believe that this cross-disciplinary virtual team assignment was a successful strategy for helping undergraduates build competencies in virtual skills. We posit that similar assignment structures and opportunities post-pandemic will also continue to prepare future students for the post-pandemic workplace.more » « less
- 
            null (Ed.)Student perceptions of the complete online transition of two CS courses in response to the COVID-19 pandemic Due to the COVID-19 pandemic, universities across the globe switched from traditional Face-to-Face (F2F) course delivery to completely online. Our university declared during our Spring break that students would not return to campus, and that all courses must be delivered fully online starting two weeks later. This was challenging to both students and instructors. In this evidence-based practice paper, we present results of end-of-semester student surveys from two Spring 2020 CS courses: a programming intensive CS2 course, and a senior theory course in Formal Languages and Automata (FLA). Students indicated course components they perceived as most beneficial to their learning, before and then after the online transition, and preferences for each regarding online vs. F2F. By comparing student reactions across courses, we gain insights on which components are easily adapted to online delivery, and which require further innovation. COVID was unfortunate, but gave a rare opportunity to compare students’ reflections on F2F instruction with online instructional materials for half a semester vs. entirely online delivery of the same course during the second half. The circumstances are unique, but we were able to acquire insights for future instruction. Some course components were perceived to be more useful either before or after the transition, and preferences were not the same in the two courses, possibly due to differences in the courses. Students in both courses found prerecorded asynchronous lectures significantly less useful than in-person lectures. For CS2, online office hours were significantly less useful than in-person office hours, but we found no significant difference in FLA. CS2 students felt less supported by their instructor after the online transition, but no significant difference was indicated by FLA students. FLA students found unproctored online exams offered through Canvas more stressful than in-person proctored exams, but the opposite was indicated by CS2 students. CS2 students indicated that visual materials from an eTextbook were more useful to them after going online than before, but FLA students indicated no significant difference. Overall, students in FLA significantly preferred the traditional F2F version of the course, while no significant difference was detected for CS2 students. We did not find significant effects from gender on the preference of one mode over the other. A serendipitous outcome was learning that some changes forced by circumstance should be considered for long term adoption. Offering online lab sessions and online exams where the questions are primarily multiple choice are possible candidates. However, we found that students need to feel the presence of their instructor to feel properly supported. To determine what course components need further improvement before transitioning to fully online mode, we computed a logistic regression model. The dependent variable is the student's preference for F2F or fully online. The independent variables are the course components before and after the online transition. For both courses, in-person lectures were a significant factor negatively affecting students' preferences of the fully online mode. Similarly, for CS2, in-person labs and in-person office hours were significant factors pushing students’ preferences toward F2F mode.more » « less
- 
            ABSTRACT Test anxiety is a common experience shared by college students and is typically investigated in the context of traditional, face-to-face courses. However, the onset of the COVID-19 pandemic resulted in the closure of universities, and many students had to rapidly shift to and balance the challenges of online learning. We investigated how the shift to online learning during the pandemic impacted trait (habitual) and state (momentary) test anxiety and whether there was variation across different demographic groups already vulnerable to performance gaps in science, technology, engineering, and mathematics (STEM) courses. Quantitative analyses revealed that trait and state test anxiety were lower in Spring 2020 (COVID semester) than in Spring 2019 and were higher overall in women than men. We did not find a difference in either trait or state anxiety in first-generation students or among persons excluded because of ethnicity or race. Qualitative analyses revealed that student priorities shifted away from coursework during Spring 2020. While students initially perceived the shift to online learning as beneficial, 1 month after the shift, students reported more difficulties studying and completing their coursework. Taken together, these results are the first to compare reports of test anxiety during a traditional, undisrupted semester to the semester where COVID-19 forced a sudden transition online.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
