Protein‐protein interactions are critical to protein function, but three‐dimensional (3D) arrangements of interacting proteins have proven hard to predict, even given the identities and 3D structures of the interacting partners. Specifically, identifying the relevant pairwise interaction surfaces remains difficult, often relying on shape complementarity with molecular docking while accounting for molecular motions to optimize rigid 3D translations and rotations. However, such approaches can be computationally expensive, and faster, less accurate approximations may prove useful for large‐scale prediction and assembly of 3D structures of multi‐protein complexes. We asked if a reduced representation of protein geometry retains enough information about molecular properties to predict pairwise protein interaction interfaces that are tolerant of limited structural rearrangements. Here, we describe a reduced representation of 3D protein accessible surfaces on which molecular properties such as charge, hydrophobicity, and evolutionary rate can be easily mapped, implemented in the MorphProt package. Pairs of surfaces are compared to rapidly assess partner‐specific potential surface complementarity. On two available benchmarks of 185 overall known protein complexes, we observe predictions comparable to other structure‐based tools at correctly identifying protein interaction surfaces. Furthermore, we examined the effect of molecular motion through normal mode simulation on a benchmark receptor‐ligand pair and observed no marked loss of predictive accuracy for distortions of up to 6 Å Cα‐RMSD. Thus, a shape reduction of protein surfaces retains considerable information about surface complementarity, offers enhanced speed of comparison relative to more complex geometric representations, and exhibits tolerance to conformational changes.
more » « less- PAR ID:
- 10381971
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Proteins: Structure, Function, and Bioinformatics
- Volume:
- 89
- Issue:
- 3
- ISSN:
- 0887-3585
- Page Range / eLocation ID:
- p. 348-360
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Motivation Many important cellular processes involve physical interactions of proteins. Therefore, determining protein quaternary structures provide critical insights for understanding molecular mechanisms of functions of the complexes. To complement experimental methods, many computational methods have been developed to predict structures of protein complexes. One of the challenges in computational protein complex structure prediction is to identify near-native models from a large pool of generated models. Results We developed a convolutional deep neural network-based approach named DOcking decoy selection with Voxel-based deep neural nEtwork (DOVE) for evaluating protein docking models. To evaluate a protein docking model, DOVE scans the protein–protein interface of the model with a 3D voxel and considers atomic interaction types and their energetic contributions as input features applied to the neural network. The deep learning models were trained and validated on docking models available in the ZDock and DockGround databases. Among the different combinations of features tested, almost all outperformed existing scoring functions. Availability and implementation Codes available at http://github.com/kiharalab/DOVE, http://kiharalab.org/dove/. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
Driving mechanisms of many biological functions in a cell include physical interactions of proteins. As protein-protein interactions (PPIs) are also important in disease development, protein-protein interactions are highlighted in the pharmaceutical industry as possible therapeutic targets in recent years. To understand the variety of protein-protein interactions in a proteome, it is essential to establish a method that can identify similarity and dissimilarity between protein-protein interactions for inferring the binding of similar molecules, including drugs and other proteins. In this study, we developed a novel method, protein-protein interaction-Surfer, which compares and quantifies similarity of local surface regions of protein-protein interactions. protein-protein interaction-Surfer represents a protein-protein interaction surface with overlapping surface patches, each of which is described with a three-dimensional Zernike descriptor (3DZD), a compact mathematical representation of 3D function. 3DZD captures both the 3D shape and physicochemical properties of the protein surface. The performance of protein-protein interaction-Surfer was benchmarked on datasets of protein-protein interactions, where we were able to show that protein-protein interaction-Surfer finds similar potential drug binding regions that do not share sequence and structure similarity. protein-protein interaction-Surfer is available at https://kiharalab.org/ppi-surfer .more » « less
-
Molecular simulations of biomacromolecules that assemble into multimeric complexes remain a challenge due to computationally inaccessible length and time scales. Low-resolution and implicit-solvent coarse-grained modeling approaches using traditional nonbonded interactions (both pairwise and spherically isotropic) have been able to partially address this gap. However, these models may fail to capture the complex anisotropic interactions present at macromolecular interfaces unless higher-order interaction potentials are incorporated at the expense of the computational cost. In this work, we introduce an alternate and systematic approach to represent directional interactions at protein–protein interfaces by using virtual sites restricted to pairwise interactions. We show that virtual site interaction parameters can be optimized within a relative entropy minimization framework by using only information from known statistics between coarse-grained sites. We compare our virtual site models to traditional coarse-grained models using two case studies of multimeric protein assemblies and find that the virtual site models predict pairwise correlations with higher fidelity and, more importantly, assembly behavior that is morphologically consistent with experiments. Our study underscores the importance of anisotropic interaction representations and paves the way for more accurate yet computationally efficient coarse-grained simulations of macromolecular assembly in future research.more » « less
-
The 3D Zernike polynomials form an orthonormal basis of the unit ball. The associated 3D Zernike moments have been successfully applied for 3D shape recognition; they are popular in structural biology for comparing protein structures and properties. Many algorithms have been proposed for computing those moments, starting from a voxel-based representation or from a surface based geometric mesh of the shape. As the order of the 3D Zernike moments increases, however, those algorithms suffer from decrease in computational efficiency and more importantly from numerical accuracy. In this paper, new algorithms are proposed to compute the 3D Zernike moments of a homogeneous shape defined by an unstructured triangulation of its surface that remove those numerical inaccuracies. These algorithms rely on the analytical integration of the moments on tetrahedra defined by the surface triangles and a central point and on a set of novel recurrent relationships between the corresponding integrals. The mathematical basis and implementation details of the algorithms are presented and their numerical stability is evaluated.more » « less
-
Abstract Increasing numbers of protein interactions have been identified in high-throughput experiments, but only a small proportion have solved structures. Recently, sequence coevolution-based approaches have led to a breakthrough in predicting monomer protein structures and protein interaction interfaces. Here, we address the challenges of large-scale interaction prediction at residue resolution with a fast alignment concatenation method and a probabilistic score for the interaction of residues. Importantly, this method (EVcomplex2) is able to assess the likelihood of a protein interaction, as we show here applied to large-scale experimental datasets where the pairwise interactions are unknown. We predict 504 interactions de novo in the
E. coli membrane proteome, including 243 that are newly discovered. While EVcomplex2 does not require available structures, coevolving residue pairs can be used to produce structural models of protein interactions, as done here for membrane complexes including the Flagellar Hook-Filament Junction and the Tol/Pal complex.