Abstract Macromolecular assembly depends on tightly regulated pairwise binding interactions that are selectively favored at assembly sites while being disfavored in the soluble phase. This selective control can arise due to molecular density-enhanced binding, as recently found for the kinetochore scaffold protein CENP-T. When clustered, CENP-T recruits markedly more Ndc80 complexes than its monomeric counterpart, but the underlying molecular basis remains elusive. Here, we use quantitativein vitroassays to reveal two distinct mechanisms driving this behavior. First, Ndc80 binding to CENP-T is a two-step process: initially, Ndc80 molecules rapidly associate and dissociate from disordered N-terminal binding sites on CENP-T. Over time, these sites undergo maturation, resulting in stronger Ndc80 retention. Second, we find that this maturation transition is regulated by a kinetic barrier that is sensitive to the molecular environment. In the soluble phase, binding site maturation is slow, but within CENP-T clusters, this process is markedly accelerated. Notably, the two Ndc80 binding sites in human CENP-T exhibit distinct maturation rates and environmental sensitivities, which correlate with their different amino-acid content and predicted binding conformations. This clustering-induced maturation is evident in dividing human cells, suggesting a distinct regulatory entry point for controlling kinetochore assembly. We propose that the tunable acceleration of binding site maturation by molecular crowding may represent a general mechanism for promoting the formation of macromolecular structures. Significance StatementA distinctive mechanism of protein-protein interaction underpins the assembly of kinetochores, which is critical for human cell division. During mitosis, the Ndc80 complex must bind tightly to the unstructured N-terminus of its receptor, CENP-T, which is densely clustered at kinetochores. Using single-moleculein vitroassays, we show that Ndc80 binding is mediated by an initially unstable yet tunable interface. The high molecular density of CENP-T at the kinetochores accelerates the maturation of this binding interface, favoring the formation of stable complexes within the kinetochore structure, rather than in the soluble phase. This environment-driven modulation of binding site maturation may represent a key regulatory mechanism for ensuring strong and specific interactions during the assembly of macromolecular complexes such as kinetochores.
more »
« less
Formalizing Coarse-Grained Representations of Anisotropic Interactions at Multimeric Protein Interfaces Using Virtual Sites
Molecular simulations of biomacromolecules that assemble into multimeric complexes remain a challenge due to computationally inaccessible length and time scales. Low-resolution and implicit-solvent coarse-grained modeling approaches using traditional nonbonded interactions (both pairwise and spherically isotropic) have been able to partially address this gap. However, these models may fail to capture the complex anisotropic interactions present at macromolecular interfaces unless higher-order interaction potentials are incorporated at the expense of the computational cost. In this work, we introduce an alternate and systematic approach to represent directional interactions at protein–protein interfaces by using virtual sites restricted to pairwise interactions. We show that virtual site interaction parameters can be optimized within a relative entropy minimization framework by using only information from known statistics between coarse-grained sites. We compare our virtual site models to traditional coarse-grained models using two case studies of multimeric protein assemblies and find that the virtual site models predict pairwise correlations with higher fidelity and, more importantly, assembly behavior that is morphologically consistent with experiments. Our study underscores the importance of anisotropic interaction representations and paves the way for more accurate yet computationally efficient coarse-grained simulations of macromolecular assembly in future research.
more »
« less
- Award ID(s):
- 2138620
- PAR ID:
- 10491110
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry B
- Volume:
- 128
- Issue:
- 6
- ISSN:
- 1520-6106
- Page Range / eLocation ID:
- 1394 to 1406
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The process of self-assembly of biomolecules underlies the formation of macromolecular assemblies, biomolecular materials and protein folding, and thereby is critical in many disciplines and related applications. This process typically spans numerous spatiotemporal scales and hence, is well suited for scientific interrogation via coarse-grained (CG) models used in conjunction with a suitable computational approach. This perspective provides a discussion on different coarse-graining approaches which have been used to develop CG models that resolve the process of self-assembly of biomolecules.more » « less
-
Coarse-grained models allow computational investigation of biomolecular processes occurring on long time and length scales, intractable with atomistic simulation. Traditionally, many coarse-grained models rely mostly on pairwise interaction potentials. However, the decimation of degrees of freedom should, in principle, lead to a complex many-body effective interaction potential. In this work, we use experimental data on mutant stability to parametrize coarse-grained models for two proteins with and without many-body terms. We demonstrate that many-body terms are necessary to reproduce quantitatively the effects of point mutations on protein stability, particularly to implicitly take into account the effect of the solvent.more » « less
-
Most coarse-grained models of individual capsomers associated with viruses employ rigid building blocks that do not exhibit shape adaptation during self-assembly. We develop a coarse-grained general model of viral capsomers that incorporates their stretching and bending energies while retaining many features of the rigid-body models, including an overall trapezoidal shape with attractive interaction sites embedded in the lateral walls to favor icosahedral capsid assembly. Molecular dynamics simulations of deformable capsomers reproduce the rich self-assembly behavior associated with a general T=1 icosahedral virus system in the absence of a genome. Transitions from non-assembled configurations to icosahedral capsids to kinetically-trapped malformed structures are observed as the steric attraction between capsomers is increased. An assembly diagram in the space of capsomer–capsomer steric attraction and capsomer deformability reveals that assembling capsomers of higher deformability into capsids requires increasingly large steric attraction between capsomers. Increasing capsomer deformability can reverse incorrect capsomer–capsomer binding, facilitating transitions from malformed structures to symmetric capsids; however, making capsomers too soft inhibits assembly and yields fluid-like structures.more » « less
-
Schneidman-Duhovny, Dina (Ed.)We present OpenAWSEM and Open3SPN2, new cross-compatible implementations of coarse-grained models for protein (AWSEM) and DNA (3SPN2) molecular dynamics simulations within the OpenMM framework. These new implementations retain the chemical accuracy and intrinsic efficiency of the original models while adding GPU acceleration and the ease of forcefield modification provided by OpenMM’s Custom Forces software framework. By utilizing GPUs, we achieve around a 30-fold speedup in protein and protein-DNA simulations over the existing LAMMPS-based implementations running on a single CPU core. We showcase the benefits of OpenMM’s Custom Forces framework by devising and implementing two new potentials that allow us to address important aspects of protein folding and structure prediction and by testing the ability of the combined OpenAWSEM and Open3SPN2 to model protein-DNA binding. The first potential is used to describe the changes in effective interactions that occur as a protein becomes partially buried in a membrane. We also introduced an interaction to describe proteins with multiple disulfide bonds. Using simple pairwise disulfide bonding terms results in unphysical clustering of cysteine residues, posing a problem when simulating the folding of proteins with many cysteines. We now can computationally reproduce Anfinsen’s early Nobel prize winning experiments by using OpenMM’s Custom Forces framework to introduce a multi-body disulfide bonding term that prevents unphysical clustering. Our protein-DNA simulations show that the binding landscape is funneled towards structures that are quite similar to those found using experiments. In summary, this paper provides a simulation tool for the molecular biophysics community that is both easy to use and sufficiently efficient to simulate large proteins and large protein-DNA systems that are central to many cellular processes. These codes should facilitate the interplay between molecular simulations and cellular studies, which have been hampered by the large mismatch between the time and length scales accessible to molecular simulations and those relevant to cell biology.more » « less