skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Imaging of 3D objects with experimental data using orthogonality sampling methods
Abstract This paper is concerned with imaging of 3D scattering objects with experimental data from the Fresnel database. The first goal of the paper is to investigate a modified version of the orthogonality sampling method (OSM) by Harris and Nguyen [2020 SIAM J. Sci. Comput. 42 B72–737] for the imaging problem. The advantage of the modified OSM over its original version lies in its applicability to more types of polarization vectors associated with the electromagnetic scattering data. We analyze the modified OSM using the factorization analysis for the far field operator and the Funk–Hecke formula. The second goal is to verify the performance of the modified OSM, the OSM, and the classical factorization method for the 3D Fresnel database. The modified OSM we propose is able to invert the sparse and limited-aperture real data in a fast, simple, and efficient way. It is also shown in the real data verification that the modified OSM performs better than its original version and the factorization method.  more » « less
Award ID(s):
1812693
PAR ID:
10381992
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Inverse Problems
Volume:
38
Issue:
2
ISSN:
0266-5611
Page Range / eLocation ID:
025007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This paper is concerned with the inverse scattering problem for the three-dimensional Maxwell equations in bi-anisotropic periodic structures.The inverse scattering problem aims to determine the shape of bi-anisotropic periodic scatterers from electromagnetic near-field data at a fixed frequency.The factorization method is studied as an analytical and numerical tool for solving the inverse problem.We provide a rigorous justification of the factorization method which results in the unique determination and a fast imaging algorithm for the periodic scatterer.Numerical examples for imaging three-dimensional periodic structures are presented to examine the efficiency of the method. 
    more » « less
  2. LU factorization for sparse matrices is an important computing step for many engineering and scientific problems such as circuit simulation. There have been many efforts toward parallelizing and scaling this algorithm, which include the recent efforts targeting the GPUs. However, it is still challenging to deploy a complete sparse LU factorization workflow on a GPU due to high memory requirements and data dependencies. In this paper, we propose the first complete GPU solution for sparse LU factorization. To achieve this goal, we propose an out-of-core implementation of the symbolic execution phase, thus removing the bottleneck due to large intermediate data structures. Next, we propose a dynamic parallelism implementation of Kahn's algorithm for topological sort on the GPUs. Finally, for the numeric factorization phase, we increase the parallelism degree by removing the memory limits for large matrices as compared to the existing implementation approaches. Experimental results show that compared with an implementation modified from GLU 3.0, our out-of-core version achieves speedups of 1.13--32.65X. Further, our out-of-core implementation achieves a speedup of 1.2--2.2 over an optimized unified memory implementation on the GPU. Finally, we show that the optimizations we introduce for numeric factorization turn out to be effective. 
    more » « less
  3. LU factorization for sparse matrices is an important computing step for many engineering and scientific problems such as circuit simulation. There have been many efforts toward parallelizing and scaling this algorithm, which include the recent efforts targeting the GPUs. However, it is still challenging to deploy a complete sparse LU factorization workflow on a GPU due to high memory requirements and data dependencies. In this paper, we propose the first complete GPU solution for sparse LU factorization. To achieve this goal, we propose an out-of-core implementation of the symbolic execution phase, thus removing the bottleneck due to large intermediate data structures. Next, we propose a dynamic parallelism implementation of Kahn's algorithm for topological sort on the GPUs. Finally, for the numeric factorization phase, we increase the parallelism degree by removing the memory limits for large matrices as compared to the existing implementation approaches. Experimental results show that compared with an implementation modified from GLU 3.0, our out-of-core version achieves speedups of 1.13--32.65X. Further, our out-of-core implementation achieves a speedup of 1.2--2.2 over an optimized unified memory implementation on the GPU. Finally, we show that the optimizations we introduce for numeric factorization turn out to be effective. 
    more » « less
  4. null (Ed.)
    Abstract Non-negative matrix factorization and its extensions were applied to various areas (i.e., dimensionality reduction, clustering, etc.). When the original data are corrupted by outliers and noise, most of non-negative matrix factorization methods cannot achieve robust factorization and learn a subspace with binary codes. This paper puts forward a robust semi-supervised non-negative matrix factorization method for binary subspace learning, called RSNMF, for image clustering. For better clustering performance on the dataset contaminated by outliers and noise, we propose a weighted constraint on the noise matrix and impose manifold learning into non-negative matrix factorization. Moreover, we utilize the discrete hashing learning method to constrain the learned subspace, which can achieve a binary subspace from the original data. Experimental results validate the robustness and effectiveness of RSNMF in binary subspace learning and image clustering on the face dataset corrupted by Salt and Pepper noise and Contiguous Occlusion. 
    more » « less
  5. We investigated surface nanostructures on an antiferromagnet MnBi2Te4 using a novel imaging technique, direct (real)-space and real time coherent x-ray imaging (direct-CXI). This technique has provided new insights into antiferromagnetic textures, including the formation of anti-phase antiferromagnetic (AFM) domains and thermal dynamics of AFM domains and domain walls. While this method produces real-space images of AFM textures without requiring a complex imaging retrieval process, its underlying imaging mechanism has not been fully understood, limiting a deep understanding of AFM textures and the information they contain. By investigating the well-defined structural characteristics of the nanostructures fabricated on MnBi2Te4, we elucidate the imaging principle of this novel technique. We find that the observed images can be well explained by the Fresnel diffraction integral. Using a simple model from classical optics, our calculations successfully reproduce the experimentally observed images of the nanostructures. This demonstrates that direct-CXI not only provides straightforward real-space imaging but also contains phase information through its Fresnel diffraction integral. 
    more » « less