skip to main content


Title: Injecting Domain Knowledge from Empirical Interatomic Potentials to Neural Networks for Predicting Material Properties
For decades, atomistic modeling has played a crucial role in predicting the behavior of materials in numerous fields ranging from nanotechnology to drug discovery. The most accurate methods in this domain are rooted in first-principles quantum mechanical calculations such as density functional theory (DFT). Because these methods have remained computationally prohibitive, practitioners have traditionally focused on defining physically motivated closed-form expressions known as empirical interatomic potentials (EIPs) that approximately model the interactions between atoms in materials. In recent years, neural network (NN)-based potentials trained on quantum mechanical (DFT-labeled) data have emerged as a more accurate alternative to conventional EIPs. However, the generalizability of these models relies heavily on the amount of labeled training data, which is often still insufficient to generate models suitable for general-purpose applications. In this paper, we propose two generic strategies that take advantage of unlabeled training instances to inject domain knowledge from conventional EIPs to NNs in order to increase their generalizability. The first strategy, based on weakly supervised learning, trains an auxiliary classifier on EIPs and selects the best-performing EIP to generate energies to supplement the ground-truth DFT energies in training the NN. The second strategy, based on transfer learning, first pretrains the NN on a large set of easily obtainable EIP energies, and then fine-tunes it on ground-truth DFT energies. Experimental results on three benchmark datasets demonstrate that the first strategy improves baseline NN performance by 5% to 51% while the second improves baseline performance by up to 55%. Combining them further boosts performance.  more » « less
Award ID(s):
1834251
NSF-PAR ID:
10382006
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
NeurIPS 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Purpose

    Synthetic digital mammogram (SDM) is a 2D image generated from digital breast tomosynthesis (DBT) and used as a substitute for a full‐field digital mammogram (FFDM) to reduce the radiation dose for breast cancer screening. The previous deep learning‐based method used FFDM images as the ground truth, and trained a single neural network to directly generate SDM images with similar appearances (e.g., intensity distribution, textures) to the FFDM images. However, the FFDM image has a different texture pattern from DBT. The difference in texture pattern might make the training of the neural network unstable and result in high‐intensity distortion, which makes it hard to decrease intensity distortion and increase perceptual similarity (e.g., generate similar textures) at the same time. Clinically, radiologists want to have a 2D synthesized image that feels like an FFDM image in vision and preserves local structures such as both mass and microcalcifications (MCs) in DBT because radiologists have been trained on reading FFDM images for a long time, while local structures are important for diagnosis. In this study, we proposed to use a deep convolutional neural network to learn the transformation to generate SDM from DBT.

    Method

    To decrease intensity distortion and increase perceptual similarity, a multi‐scale cascaded network (MSCN) is proposed to generate low‐frequency structures (e.g., intensity distribution) and high‐frequency structures (e.g., textures) separately. The MSCN consist of two cascaded sub‐networks: the first sub‐network is used to predict the low‐frequency part of the FFDM image; the second sub‐network is used to generate a full SDM image with textures similar to the FFDM image based on the prediction of the first sub‐network. The mean‐squared error (MSE) objective function is used to train the first sub‐network, termed low‐frequency network, to generate a low‐frequency SDM image. The gradient‐guided generative adversarial network's objective function is to train the second sub‐network, termed high‐frequency network, to generate a full SDM image with textures similar to the FFDM image.

    Results

    1646 cases with FFDM and DBT were retrospectively collected from the Hologic Selenia system for training and validation dataset, and 145 cases with masses or MC clusters were independently collected from the Hologic Selenia system for testing dataset. For comparison, the baseline network has the same architecture as the high‐frequency network and directly generates a full SDM image. Compared to the baseline method, the proposed MSCN improves the peak‐to‐noise ratio from 25.3 to 27.9 dB and improves the structural similarity from 0.703 to 0.724, and significantly increases the perceptual similarity.

    Conclusions

    The proposed method can stabilize the training and generate SDM images with lower intensity distortion and higher perceptual similarity.

     
    more » « less
  2. Abstract

    The conductor‐like polarizable continuum model (C‐PCM) with switching/Gaussian smooth discretization is a widely used implicit solvation model in quantum chemistry. We have previously implemented C‐PCM solvation for Hartree‐Fock (HF) and density functional theory (DFT) on graphical processing units (GPUs), enabling the quantum mechanical treatment of large solvated biomolecules. Here, we first propose a GPU‐based algorithm for the PCM conjugate gradient linear solver that greatly improves the performance for very large molecules. The overhead for PCM‐related evaluations now consumes less than 15% of the total runtime for DFT calculations on large molecules. Second, we demonstrate that our algorithms tailored for ground state C‐PCM are transferable to excited state properties. Using a single GPU, our method evaluates the analytic gradient of the linear response PCM time‐dependent density functional theory energy up to 80× faster than a conventional central processing unit (CPU)‐based implementation. In addition, our C‐PCM algorithms are transferable to other methods that require electrostatic potential (ESP) evaluations. For example, we achieve speed‐ups of up to 130× for restricted ESP‐based atomic charge evaluations, when compared to CPU‐based codes. We also summarize and compare the different PCM cavity discretization schemes used in some popular quantum chemistry packages as a reference for both users and developers.

     
    more » « less
  3. Abstract Background

    The research gap addressed in this study is the applicability of deep neural network (NN) models on wearable sensor data to recognize different activities performed by patients with Parkinson’s Disease (PwPD) and the generalizability of these models to PwPD using labeled healthy data.

    Methods

    The experiments were carried out utilizing three datasets containing wearable motion sensor readings on common activities of daily living. The collected readings were from two accelerometer sensors. PAMAP2 and MHEALTH are publicly available datasets collected from 10 and 9 healthy, young subjects, respectively. A private dataset of a similar nature collected from 14 PwPD patients was utilized as well. Deep NN models were implemented with varying levels of complexity to investigate the impact of data augmentation, manual axis reorientation, model complexity, and domain adaptation on activity recognition performance.

    Results

    A moderately complex model trained on the augmented PAMAP2 dataset and adapted to the Parkinson domain using domain adaptation achieved the best activity recognition performance with an accuracy of 73.02%, which was significantly higher than the accuracy of 63% reported in previous studies. The model’s F1 score of 49.79% significantly improved compared to the best cross-testing of 33.66% F1 score with only data augmentation and 2.88% F1 score without data augmentation or domain adaptation.

    Conclusion

    These findings suggest that deep NN models originating on healthy data have the potential to recognize activities performed by PwPD accurately and that data augmentation and domain adaptation can improve the generalizability of models in the healthy-to-PwPD transfer scenario. The simple/moderately complex architectures tested in this study could generalize better to the PwPD domain when trained on a healthy dataset compared to the most complex architectures used. The findings of this study could contribute to the development of accurate wearable-based activity monitoring solutions for PwPD, improving clinical decision-making and patient outcomes based on patient activity levels.

     
    more » « less
  4. Puyol Anton, E ; Pop, M ; Sermesant, M ; Campello, V ; Lalande, A ; Lekadir, K ; Suinesiaputra, A ; Camara, O ; Young, A (Ed.)
    Cardiac cine magnetic resonance imaging (CMRI) is the reference standard for assessing cardiac structure as well as function. However, CMRI data presents large variations among different centers, vendors, and patients with various cardiovascular diseases. Since typical deep-learning-based segmentation methods are usually trained using a limited number of ground truth annotations, they may not generalize well to unseen MR images, due to the variations between the training and testing data. In this study, we proposed an approach towards building a generalizable deep-learning-based model for cardiac structure segmentations from multi-vendor,multi-center and multi-diseases CMRI data. We used a novel combination of image augmentation and a consistency loss function to improve model robustness to typical variations in CMRI data. The proposed image augmentation strategy leverages un-labeled data by a) using CycleGAN to generate images in different styles and b) exchanging the low-frequency features of images from different vendors. Our model architecture was based on an attention-gated U-Net model that learns to focus on cardiac structures of varying shapes and sizes while suppressing irrelevant regions. The proposed augmentation and consistency training method demonstrated improved performance on CMRI images from new vendors and centers. When evaluated using CMRI data from 4 vendors and 6 clinical center, our method was generally able to produce accurate segmentations of cardiac structures. 
    more » « less
  5. null (Ed.)
    Domain adaptation methods have been introduced for auto-filtering disaster tweets to address the issue of lacking labeled data for an emerging disaster. In this article, the authors present and compare two simple, yet effective approaches for the task of classifying disaster-related tweets. The first approach leverages the unlabeled target disaster data to align the source disaster distribution to the target distribution, and, subsequently, learns a supervised classifier from the modified source data. The second approach uses the strategy of self-training to iteratively label the available unlabeled target data, and then builds a classifier as a weighted combination of source and target-specific classifiers. Experimental results using Naïve Bayes as the base classifier show that both approaches generally improve performance as compared to baseline. Overall, the self-training approach gives better results than the alignment-based approach. Furthermore, combining correlation alignment with self-training leads to better result, but the results of self-training are still better. 
    more » « less