skip to main content

This content will become publicly available on May 4, 2023

Title: Sound‐guided assessment and localization of pulmonary air leak
Pulmonary air leak is the most common complication of lung surgery, with air leaks that persist longer than 5 days representing a major source of post-surgery morbidity. Clinical management of air leaks is challenging due to limited methods to precisely locate and assess leaks. Here, we present a sound-guided methodology that enables rapid quantitative assessment and precise localization of air leaks by analyzing the distinct sounds generated as the air escapes through defective lung tissue. Air leaks often present after lung surgery due to loss of tissue integrity at or near a staple line. Accordingly, we investigated air leak sounds from a focal pleural defect in a rat model and from a staple line failure in a clinically relevant swine model to demonstrate the high sensitivity and translational potential of this approach. In rat and swine models of free-flowing air leak under positive pressure ventilation with intrapleural microphone 1 cm from the lung surface, we identified that: (a) pulmonary air leaks generate sounds that contain distinct harmonic series, (b) acoustic characteristics of air leak sounds can be used to classify leak severity, and (c) precise location of the air leak can be determined with high resolution (within 1 cm) by mapping more » the sound loudness level across the lung surface. Our findings suggest that sound-guided assessment and localization of pulmonary air leaks could serve as a diagnostic tool to inform air leak detection and treatment strategies during video-assisted thoracoscopic surgery (VATS) or thoracotomy procedures. « less
; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Bioengineering & Translational Medicine
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Photoacoustic imaging is a promising technique to provide guidance during multiple surgeries and procedures. One challenge with this technique is that major blood vessels in the liver are difficult to differentiate from surrounding tissue within current safety limits, which only exist for human skin and eyes. In this paper, we investigate the safety of raising this limit for liver tissue excited with a 750 nm laser wavelength and approximately 30 mJ laser energy (corresponding to approximately 150 mJ/cm2fluence). Laparotomies were performed on six swine to empirically investigate potential laser-related liver damage. Laser energy was applied for temporal durations of 1 minute, 10 minutes, and 20 minutes. Lasered liver lobes were excised either immediately after laser application (3 swine) or six weeks after surgery (3 swine). Cell damage was assessed using liver damage blood biomarkers and histopathology analyses of 41 tissue samples total. The biomarkers were generally normal over a 6 week post-surgicalin vivostudy period. Histopathology revealed no cell death, although additional pathology was present (i.e., hemorrhage, inflammation, fibrosis) due to handling, sample resection, and fibrous adhesions as a result of the laparotomy. These results support a new protocol for studying laser-related liver damage, indicating the potential to raise the safetymore »limit for liver photoacoustic imaging to approximately 150 mJ/cm2with a laser wavelength of 750 nm and for imaging durations up to 10 minutes without causing cell death. This investigation and protocol may be applied to other tissues and extended to additional wavelengths and energies, which is overall promising for introducing new tissue-specific laser safety limits for photoacoustic-guided surgery.

    « less
  2. Abstract

    Creation of sub-epithelial voids within scarred vocal folds via ultrafast laser ablation may help in localization of injectable therapeutic biomaterials towards an improved treatment for vocal fold scarring. Several ultrafast laser surgery probes have been developed for precise ablation of surface tissues; however, these probes lack the tight beam focusing required for sub-surface ablation in highly scattering tissues such as vocal folds. Here, we present a miniaturized ultrafast laser surgery probe designed to perform sub-epithelial ablation in vocal folds. The requirement of high numerical aperture for sub-surface ablation, in addition to the small form factor and side-firing architecture required for clinical use, made for a challenging optical design. An Inhibited Coupling guiding Kagome hollow core photonic crystal fiber delivered micro-Joule level ultrashort pulses from a high repetition rate fiber laser towards a custom-built miniaturized objective, producing a 1/e2focal beam radius of 1.12 ± 0.10 μm and covering a 46 × 46 μm2scan area. The probe could deliver up to 3.8 μJ pulses to the tissue surface at 40% transmission efficiency through the entire system, providing significantly higher fluences at the focal plane than were required for sub-epithelial ablation. To assess surgical performance, we performed ablation studies on freshly excised porcine hemi-larynges and found that largemore »area sub-epithelial voids could be created within vocal folds by mechanically translating the probe tip across the tissue surface using external stages. Finally, injection of a model biomaterial into a 1 × 2 mm2void created 114 ± 30 μm beneath the vocal fold epithelium surface indicated improved localization when compared to direct injection into the tissue without a void, suggesting that our probe may be useful for pre-clinical evaluation of injectable therapeutic biomaterials for vocal fold scarring therapy. With future developments, the surgical system presented here may enable treatment of vocal fold scarring in a clinical setting.

    « less
  3. Breathing biomarkers, such as breathing rate, fractional inspiratory time, and inhalation-exhalation ratio, are vital for monitoring the user's health and well-being. Accurate estimation of such biomarkers requires breathing phase detection, i.e., inhalation and exhalation. However, traditional breathing phase monitoring relies on uncomfortable equipment, e.g., chestbands. Smartphone acoustic sensors have shown promising results for passive breathing monitoring during sleep or guided breathing. However, detecting breathing phases using acoustic data can be challenging for various reasons. One of the major obstacles is the complexity of annotating breathing sounds due to inaudible parts in regular breathing and background noises. This paper assesses the potential of using smartphone acoustic sensors for passive unguided breathing phase monitoring in a natural environment. We address the annotation challenges by developing a novel variant of the teacher-student training method for transferring knowledge from an inertial sensor to an acoustic sensor, eliminating the need for manual breathing sound annotation by fusing signal processing with deep learning techniques. We train and evaluate our model on the breathing data collected from 131 subjects, including healthy individuals and respiratory patients. Experimental results show that our model can detect breathing phases with 77.33% accuracy using acoustic sensors. We further present an example use-casemore »of breathing phase-detection by first estimating the biomarkers from the estimated breathing phases and then using these biomarkers for pulmonary patient detection. Using the detected breathing phases, we can estimate fractional inspiratory time with 92.08% accuracy, the inhalation-exhalation ratio with 86.76% accuracy, and the breathing rate with 91.74% accuracy. Moreover, we can distinguish respiratory patients from healthy individuals with up to 76% accuracy. This paper is the first to show the feasibility of detecting regular breathing phases towards passively monitoring respiratory health and well-being using acoustic data captured by a smartphone.« less
  4. We present a miniaturized ultrafast laser surgery probe with improved miniaturized optics to deliver higher peak powers and enable higher surgical speeds than previously possible. A custom-built miniaturized CaF2objective showed no evidence of the strong multiphoton absorption observed in our previous ZnS-based probe, enabling higher laser power delivery to the tissue surface for ablation. A Kagome fiber delivered ultrashort pulses from a high repetition rate fiber laser to the objective, producing a focal beam radius of 1.96 μm and covering a 90×90 μm2scan area. The probe delivered the maximum available fiber laser power, providing fluences >6 J/cm2at the tissue surface at 53% transmission efficiency. We characterized the probe’s performance through a parametric ablation study on bovine cortical bone and defined optimal operating parameters for surgery using an experimental- and simulation-based approach. The entire opto-mechanical system, enclosed within a 5-mm diameter housing with a 2.6-mm diameter probe tip, achieved material removal rates >0.1 mm3/min, however removal rates were ultimately limited by the available laser power. Towards a next generation surgery probe, we simulated maximum material removal rates when using a higher power fiber laser and found that removal rates >2 mm3/min could be attained through appropriate selection of laser surgery parameters.more »With future development, the device presented here can serve as a precise surgical tool with clinically viable speeds for delicate applications such as spinal decompression surgeries.

    « less
  5. Accurate precise positioning at millimeter wave frequencies is possible due to the large available bandwidth that permits precise on-the-fly time of flight measurements using conventional air interface standards. In addition, narrow antenna beamwidths may be used to determine the angles of arrival and departure of the multipath components between the base station and mobile users. By combining accurate temporal and angular information of multipath components with a 3- D map of the environment (that may be built by each user or downloaded a-priori), robust localization is possible, even in non-line-of-sight environments. In this work, we develop an accurate 3-D ray tracer for an indoor office environment and demonstrate how the fusion of angle of departure and time of flight information in concert with a 3-D map of a typical large office environment provides a mean accuracy of 12.6 cm in line-of-sight and 16.3 cm in non-line-of-sight, over 100 receiver distances ranging from 1.5 m to 24.5 m using a single base station. We show how increasing the number of base stations improves the average non-line-of-sight position location accuracy to 5.5 cm at 21 locations with a maximum propagation distance of 24.5 m. Index Terms—localization; positioning; position location; navigation; mmWave; 5G;more »ray tracing; site-specific propagation; map-based« less